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Preface

My aim in writing this book was to present a logical development of
the fundamentals of Abstract Algebra. 1 have endeavored to avoid
assuming anything not proved prior to its use, and particularly to avoid
illustrative examples from other parts of mathematics and elsewhere.

Such examples are often more confusing to the student than they
are helpful since the student frequently is hot acquainted sufficiently
with the other material .to appreciate, or in many instances, even to
understand the examples. So far as I can recall at the moment of
writing, 1 have deviated from this policy in only two instances: in
some exercises giving groups as rotations of the equilateral triangle
and the square, and in taking up briefly, in Chapter 5, the trisection
of the angle. These two instances may very well be omitted without
interfering with the continuity of the development.

As to the subject matter chosen, I hope that I have chosen the
topics most essential to prepare the student for further reading in
more specialized books on particular parts of algebra. 1 should men-
tion that | have been most influenced by the early chapters on Algébre
by the great French mathematician, N. Bourbaki, and have generally
followed the terminology used there. In recent years there have
appeared many individual books devoted to Linear Algebra. A foun-
dation for this subject, given from the point of view of the rest of the
book, appears as Chapter 7.

The teat is intended for use by the advanced undergraduate or
the beginning graduate student. 1 have attempted to make the text
self-contained, but some mathematical maturity is undoubtedly
essential to success in mastering the material. The book starts at a
relatively elementary level in discussing sets and mappings, and pro-
ceeds logically from there. No attempt is made to put the beginnings
on a completely postulational basis, such as giving a completely
axiomatic treatment of sets: also, no attempt is made to consxder

the ultimate in simplicity in that no systems with fewer properties
than semigroups are treated.



vi Preface

Many of the theorems are left 15 exercises for the reader These
are such that the method of proof 1s very much ke one or more of
the theorems proved 1n the text matertal or else simple consequences
of those theorems Numerous hints are given in the exercises for
aiding the student tn proving such theorems

$ ogical symbols are used whenever appropriate such as in stating
and proving theorems stating defimtions etc 1 have found consider
able difference of feeling on such use A decided majonity of mathe
maticirns 1 have consulted on the matter defimitely prefer this method
particularly among younger m 1t must be ad d that
feeling w 1s strong on both sides 1 have attempted to use such sym
bols somewhat spaningly at first often stating theorems etc both in
words and m symbols giving the reader an opportunity to become
famihar with them 1 feel and most of the mathematicians consulted
agree with me that the use of logical symbols results in brevity and
much greater clanty

The symbol m 1s used throughout the book to indicate the end of
a proof This 1s due to Prof Paul R Halmos and replaces the older
QED

The matenal contaimed here 1s somewhat more than the author
has found possible to cover 1n an academic yer with even rather
supertor students This should enable a teacher using this book as
a text to choose somewhat among the subgects considered and have
enough to occupy a full year course In recent years | have covered
very litle of Chapter 7 but practically everything in the first six
chapters

[ have used four earhier verstons tn mululthed form in teaching
year courses in the subject In each revision [ have attempted to
remove difficulties which the students encountered m the previous
version 1 am thus indebted to many former students for their con
structive cnitteism and their discovery of many errors

I wish to express my appreciation to the Consulting Editor Prof
Andrew M Gleason of Harvard and to my colleague Prof Clelle
C Oursler for a number of helpful suggestions for improving the
manuscript Also | wish to thank my colleagues Prof Oursler and
Prof George V Poynor for reading the printer s proofs and making
useful comments on the finat version of the book

A O LINDSTRUM JR



A Short Introduction for the Student

One of the most important problems in the history of mathematics
has been the solving of equations, and a very great part of algebra
has been devoted to solving equations of two types: (1) single poly-
nomial equations of degree n in one unknown, and (2) linear equations
in several unknowns. The first six chapters of the present book are
primarily devoted to equations of the first type, culminating in the
Galois Theory of Equations. The last chapter and certain parts of
the earlier chapters deal with equations of the second type.

It is usually the case in mathematics that continued attempts
to solve a particular problem give rise to many more problems with
many and various results. This is certainly the case with the attempts
to solve equations.

One of these results has been an intensive study of the way in
which elements combine under various laws of combining, such as
addition, multiplication, and so forth. This has led to an investigation
of such fundamental building blocks as sets and mappings. By using
mappings of one set into another and defining laws of composition
by means of such mappings, it is possible to prove many things more
simply and more generally than was possible before. We consider
this particularly in the first two chapters.

Another way of studying and obtaining general results is to con-
sider rather uncomplicated systems. We do this in Chapters 1 and 2
when we consider semigroups and groups. By studying such systems
we obtain results which apply, for example, to both addition and
multiplication and also to many other methods of combining elements.

There are three very important mathematical systems which
are very convenient to have available as soon as possible. These are
the systems of the natural numbers, the integers, and the rational
numbers. We derive these as quickly as is practicable, using the
general abstract results which we have been developing. Their deriva-
tion, at least that of the integers and the rational numbers, is such
as to be applicable to the derivation of other systems.

vil



vy Introduct on for the Student

In Chapter 4 we proceed systematically to develop more and more
complicated mathematical systems having more and more laws of
composition As we proceed we consider the most important prop
erties of these systems

In Chapters 5 and 6 we are parucularly interested 1n that abstract
system whose prototype 1s the set of rational numbers 1t 1s the system
ealled a field It 1s of particular sigmficance for the solution of equa
tions since one 1mportant problem 1s to determuine for a polynonual
equation of degree n when 1t 1s possible to find a formula involving
addition subtraction muluplication division and the extraction of
roots performed on the coefficients of the equation which will give
the roots of the equation A field 1s the most general system i which
addition  subtraction multiplication and division (except by zero)
can always be carned out Many of the results of group theory are
found to be useful 1 considering fields The culmination of our study
of fields 15 contained 1n the theorems of the Galois Theory of Frelds

A problem 1n mathematics can be disposed of n either of two
ways by giving its solutton or by proving that there ts no solution
The problem of finding a formula of the type described 1n the above
paragraph 1s disposed of in the Galois Theory of Equations by the
proof that such a formula cannot exist if the degree of the equation
1s 5 or greater We conclude Chapter 6 by considering the Galois
Theory of Equations

In Chapter 7 we complete our study of the problem of the second
type given at the start of this [ntroduction and proceed to an extensive
discussion of vanous concepts which arose 1n the process of disposing
of this problem

So far we have been considening how the solution of equatons
has been studied However it often happens in mathematics that
the methods developed to solve one problem or a set of problems are
found to be of importance and benefit 1n other parts of mathematics
This has definitely been the case with our present subject Most of
the methods and concepts which are developed in this book have wide
application both in algebra and in other branches of mathematics
This s why we spend as much time as we do 1n making precise and
detailed investigation of so many different concepts If our purpose
were only the solution of the two types of equations given at the begin
ning we could accomphsh 1t in much less time and space

In accord with present practices in mathematics the method of
preseptanon 15 abstrwct and formal Qace the reader has growa
accustomed to 1t he should find this clearer and more concise than
other methods
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Chapter 1: Sets, Mappings, Laws of

Composition, and Natural Numbers

In this chapter we begin with a presentation of certain notation and
symbols which we shall use throughout the book. Then we discuss
sets, mappings, and set products and use them to define laws of in-
ternal composition. Next we consider various fundamental properties
which may be possessed by such laws. Finally, we end the chapter
with a development of a mathematical system of the utmost impor-
tance, the natural numbers.

1. LOGIC

We shall assume a knowledge of ordinary logic. In giving mathematical
proofs and in making mathematical statements in general, it is often
necessary to say, “‘if statement 4 holds, then statement B holds.”
It is briefer to say, ‘‘statement 4 implies statement B,” or briefer yet
to say, “A implies B,” where we have let the letter 4 represent one
statement and the letter B another. We then proceed one step further
and introduce a symbol for the word “implies,” listing it and several
other useful logical symbols below.

The symbol = means “implies” or “imply,” depending on the
context. Thus we write 4 = B, and read it, “4 implies B.”

The symbol < means, when placed between two statements,
that each statement implies the other. Thus it can be interpreted to
mean. “if and only if.”” Thus 4 < B can be read, “4 implies B and is
implied by B,” or, “4 if and only if B.” So this means that A is a nec-
essary and sufficient condition for B, and B is a necessary and suffi-
cient condition for 4.

The symbol © means “such that.”

The symbol 3 means “‘there exists” or “there exist,” depending
on the context.

The symbol ¥V means “for all,” “for every,” or “for each,” de-
pending on the context.

1



2 Sets Mappings Lass of Composition and Natural Numbers

‘The symbol / when wrnitten through another symbol means the
negation of the statement 1n which the second symbol occurs Thus
#i means there does not exist or there do not exist depending
on the context

Since the reader may not be familinr with the use of these logical
symbols we shall use them somewhat sparingly at first and we shalf
often give statements twice once m symbolic form nd then written
out in words {or 1n the reverse order)

We shall use equality of two objects 1s meaning identity and thus
we have the following properties n which the letters @ & ¢ represent
any objects with which we may deal

Ep a=a the reflexne property
Es 1fa=05b then b=a the symmetric property
Er Wa=bandb— ¢ thena=c the transine property
These last two properties can be wniten using symbols 1s follows

E, (a=b)=(b=a) Er (a—bandb—c)=(a=c)

7 SETS

‘We shall not attempt to give a defimtion of a set Usually it will be
sufficient for the determtnation of 1 set A to have a criteron by which
to determsne whether or not a particular object x belongs to 4 We
may on occasion use the terms collection grouping as synonyms
for set We shall say that a set consssts of elements or objects

Ingivingaset S wemaywnte S={a b c d } and mean
that 5 consists of the objects « b ¢ which are histed within the
braces or If ¢(x) 1s the condttion (or the conditions) which an ele
ment x of S must satisfy in order to belong to § we may write § —
{x]¢(x)} and by thts mean that § consists of all obgects x which
satisfy the condition d(x)

DEFINITION 21 a € 4 if and only if a 15 an element of the
set A [In symbols (a € 4) <> a 1s an element of the set 4 This 1s
read a belongs to A or sometimes a belonging to A ]

A C B where 4 and B are sets if and only if whenever a € 4
then @ € B (This 1s read 4 1s contaned n B which means that
every element of A4 1s an element of B )

ADBifandonlyif B C 4

As asubsetof Bifandonlyif 4 C B

A 1s a proper subset of Bif and only if 4 € Band 4 # B
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5 denotes the empty (or null) set. (That is, @ is the set contain-
ing no elements.)

PROBLEM 2.1.  Prove that if 4 and B are any two sets, then
A=RBifandonlyif4 C Band B C A.

In Problems 2.2 and 2.3 and in Problems 3.1 through 3.5 we shall
consider the following particular sets: D= {a,b,c.d}.E= {a, b, d},
F=1{a,d,e.f},G={d,e.f,g},U={a.b,c.d,e.f g}

PrOBLEM 2.2. Find all subsets of the sets D and E. (Do not
forget &.)

DEFINITION 2.2.  Let A and B be any subsets of a set §. Then
A U B is the set of all elements belonging to 4, to B, or to both. It is
called the union of A and B. A N B is the set of all elements belong-
ing both to A4 and to B. 1t is called the intersection or common part
of A and B. The sets A and B are called disjoint if and only if 4 N B
=.

ProBLEM 2.3. FindDUE,.DNE,DNF,DNG.

ProBLEM 2.4. Express 4 U B and 4 N B in the form imme-
diately preceding Definition 2.1.

3. MAPPING OF ONE SET INTO ANOTHER

DerFiNITION 3.1. A mapping, «. of a set, S, into a set, T, is
defined whenever to each element s &€ §, there is associated with
it exactly one element ¢+ € T. The element, ¢, is called the image of s
and we usually denote it by sa =1, or, to use functional notation,
als) = 1. The mapping itself is sometimes written as a: § — T. The
set of all elements of T which are images under o of elements of S is
called the ser of images of S under «, and is denoted by Sa.

The reader should observe that the same element of the set 7 may
be the image of several different elements of S. Thus, « is a mapping
of the set D into the set E as defined immediately above Problem 2.2,
ifaa=a, ba=a. ca=b, doe=d. Here a € T is the image of both
a€ Sand b € S.

Not all the elements of the set T need to be images of elements
of S. Thus B is a mapping of E into F (above Problem 2.2) if aB=a,
bB=d. dB = e. Here f is not the image of any element of S (which
here is E).

However. y defined by ay=a. by=05b. dy=d is not a mapping
of D into E, since there is no image given for the element ¢ € D.
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DerFNITION 32 If & and B are mappings of the set S imto the
set T then o= g if and only if for alt s € S the 1mage under a 15
the same as the image under 8 [In symbols (a=B) > (Y5 ES
sa=sp) ]

In the particular mapping 8 given above we observed that not
all elements of F were images of elements of L 1t 1s conventent to
have 7 particular name for mapptngs of S into T 1n which all elements
of T are ymages Also in the mapping a above a € E was the image
of two elements @ » € D Here also it 15 convement to have a par
ticular name for mappings which do not have this property that 1s
for mappings of S into T m which no element of T s the image of
more than one element of §

DrriniTion 33 Let o be 2 mapping of the set S into the set
T Then we have

(1) a1s « mapping of S onto T if and only if each element of T
ts the 1mage of some element of §

(b)Y @ss a 1 1 mapping (read one fo one ) of S nto T if and
only 1f no two elements of S have the same image n T’

It should be noted that § and T m1y be the same set say §
Then we refer to mappings of § imto S as mappungs of § into wself
(or onto uself}

ProsLEM 3 1 Which of the followtng mappings of D into F
are | 17 Which are onto? (a) a8 —d b5—¢ b—d ds—a (b)
aB—e b—f B—a d0—d (clabp—e¢ bhp=¢ d—e db—e
(D and F as of §2)

ProsLem 32 (@) Show that € av—a bi—b ci— ¢ di—d
then ¢1sa 1 1 mapping of D onto stself (b) Show that «f for an arbt
trary set § Vs €S st~ thencisa ) | mapping of S onto itself
This mapping 1s calted the sdennzy mapping, of § onto uself

ProsLEM 33 Show that there does not extst a I-] mapping
of D onto £ Generalize

Sometimes we are interested only 1n how a mapping of §ato T
affects a parucular subset of S And going in the opposite direction
Wwe mMay have a mapping of a subset S of § nto a subset 7, of 7 and
we may wish to extend this mapping to get a mapping of § into T
We now mntroduce terminology for these cases

DeFimiTioN 34 Let S, T, be subsets of the sets § and T
respectively
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(a) Let a be a mapping of S into 7. Then e, defined by (Vs, € S1,
spa =1 s;a=1), is called the restriction of a to Sl.'

(b) Let o be a mapping of §, into T,. Then a mapping, B, of S
into T is an extension of @ to § & (¥s € §,, sa=3sB).

PROBLEM 3.4. Let H = {a, b}. Give the restriction to H of
the mapping of D into E immediately following Definition 3.1.

PROBLEM 3.5. After the manner of Definition 3.2 give thre'e
different extensions of 8 (introduced immediately following Defini-
tion 3.1.) to D.

4. SET PRODUCTS AND LAWS OF COMPOSITION

DEFINITION 4.1.  Let « be a mapping of the set I into the set
A and let ta = a,, Vi € 1. Then {a,},.; is the set of all images under
this mapping «. If I consists of all elements i € N 2 i<n € N,
then the set of images is usually denoted by {a,}i=1.0,....» OF {a1, as,
.. ,ay}. (For definition of N, see Section 6 below.)
Thus {a,}i=1...5 denotes the set of three elements {ay, as, as}.

DeFINITION 4.2.  The set product of a family of sets {E,}, ., (cf.
Definition 4.1), denoted by I, .; E,, is the set of all sets {x,|x, € E,}.;.
This set product is often called the Cartesian product of the family
of sets.

As in Definition 4.1, the set I, called the indexing set, can be any
set. One very important such set is /= {1,2}. Letting E;= S and
E.=T, we may say that the set product of S and T, denoted by
S X T, is the set of all ordered pairs, (x,y), wherex € Sandy € T.

ProBLEM 4.1. lLet H={a,b,c}, K={d,e}. Give all the
elements of / X K. How many distinct elements are there?

PrOBLEM 4.2.  For H as in Problem 4.1, find # X H, and deter-
mine the number of distinct elements.

The reader has, in his previous experience, encountered such
processes as addition, multiplication, subtraction, division, exponen-
tiation, etc. These processes are such that given two numbers in a
specified order, there is assigned to them, except in a few special
cases. another number. We wish to give an abstract formulation of
this, and do so in the next definition.

DremNimion 4.3, A law of internal composition between ele-
ments of a set S, is a mapping of a part 4 of $ X S into S. For a par-
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ticular element (v, ;) € A the image under ths mipping 15 called
the composite «f 5, and s, under this law If A =8 X § the law 55
sud to be defined ¢verys here and the sct § 18 sud to be closed with
respect to (or under) this law of composition {SometimesifA —S X §
such a law 1s called a binry operation )

Exanere 4 1 Let A ={d ¢} wnd let « be the following map
pogof A XAmto A (d dya=d (d e)n=z (e zl)u—d (e &)a
=¢ Usually the posite of two &l d by vsing

1 symbol for the law placed between the two elcmcms Thus inths
case 1f we use O to denote the Inw of composition determined by «
wehave d Od=d dOe—¢ «OQd=d eQe—v¢

ExampLE 42 Anather lhw of composition for A 1s determined
by the mapping B s follows (d d)=e (d e)f—d (e )B—d
(¢ €)B— ¢ By Definition 3 ? these mappings  and B are different
If we denote the composite under 8 by [0 we have d0d—¢
d0c¢~d «Od=d eOc—¢

ExaMPLE 43 A law of composition for #f = {a b c}1s deter
mined by the mapping y as follows (a a)y—& (a b)y—c
bajy—c¢ (ac)y—b (cayy—=b (byy—a (cb)y—a
{b byy—a (c ¢)y—c¢ Thus if we let A denote the law of com
position determined by y we have aAa—b aAb—bAha=c
abde—abdc=b bAc—cAb=a cAc-c

ProoLem 43 Give (wo other laws of composition defined
everywhere w the above set A

PrOBLEM 44 Give another law of composition defined every
where 1n the above set #f

PROBLEM 4 § Let U be as defined previously (following
Problem 2 1) and let P be the set of all subsets of U Venify in a few
cases that unton and intersection are both laws of mternal compos!
tion defined everywhere in P

PROBLEM 46  Let U be any set and let P be the set of all

subsets of U Prove that U and N are laws of internal composttion
defined everywhere in P

5 PROPERTIES OF LAWS OF INTERNAL COMPOSITION

COMMUTATIVITY  The reader has probably noticed that i
Example 41 dOe=¢ while ¢ O d—d Thus the order of the twe
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elements in the composite is of considerable importance. Often,
however, the order does not matter, and, in that case, we have a special
name to describe the law.

DEFINITION 5.1.  If [0 is a law of internal composition defined
in a set S and if, whenever a O b is defined, for a,b € §, all b
= b [0 a, then and only then the law [J is called commutative.

ProBLEM 5.1. Examine the laws of Examples 4.2 and 4.3
and those you gave in Problems 4.3 and 4.4 for commutativity.

PROBLEM 5.2. Prove that U and N are both commutative (cf.
Problem 4.6).

AsSSOCIATIVITY. As we have defined a law of composition, we
can apparently only find the composite of two elements. If we write,
purely formally, « (0 b [0 ¢ for an arbitrary law [J of internal com-
position, this expression as it stands is meaningless. We could, how-
ever, find the composite of a and b, let it be ¢, and then find the com-
posite of d and ¢. Or we could find the composite of b and ¢, letitbe e,
and then find the composite of a and ¢. That is, we form the composite
of two adjacent elements and then the composite of that with the
thud. It is customary to use some sort of grouping symbols, such as
parentheses, brackets, braces, etc., to indicate which composite is
to be found first. The one to be found first is always the one enclosed
by the parentheses or other such symbols. Thus we write the two
cases discussed above as (¢ O b) O cand a O (b O ¢), respectively.
The reader is undoubtedly familiar with the statement that these last
two expressions are equal. This is not always the case and we use a
special name to describe the law involved when it is.

DeriNiTION 5.2, If O is a law of internal composition defined
in a set § and if, whenever (¢ (Jb) Oc and a O (b O ¢) are both
defined, a,b,c € S, we have (a0 b) Dc=a (b O ¢), then and
only then is the law [J called associative.

To test whether or not a law is associative requires considering
the equation in Definition 5.2 for all possible choices of a,b,c. In
general, this may be rather difficult or, in some cases, not difficult but
quite tedious. For instance, in Example 4.3, there are 27 cases to be

considered. For the other examples in the same paragraph, only eight
cases are present.

.PROBLEM 5.3. Determine whether or not the law of Example
4.1 is associative.
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PROBLEM 54  Prove that U and 1} 1re associative

Distripurivity  The reader s famuliar from his previous math
ematic it experience with sets in which two or more laws of internal
composition are defined We have alrendy had a few such examples
such as the sets H and A of Section 4 Also U and (N are two different
laws of composition defined everywhere in the set of all subsets of a
gwven set 1t 15 natural to consider relatons between two or more such
laws Probably the most important such relationship 1s that considered
1 the next definition

DEFINITION 5 3 If O and O are two laws of internal composi
tton defined in a set § and 1if whenever a D (6 Qc) and (¢ b)
O (aT¢) are both definedinS a bc €5 a0 (bOc)=(aOb)
O (aT¢) then wmd only then s the faw O called left distributne
with respect to O

In  similar manner we can define nght distnibutivity by starting
with (6 O ¢) D a (Ths s left as 1 problem )

IF0 s then O ts left ve with respect to O
if and only 1f O 1s right distnbutive with respect to O Then we may
say merely distnbutive

ProBieM § 35 Give the full defition of nght distrbutonty of
O with respect t0 O

PROBLEM 56 State the condittons for right and left distnbu
uvity of O with respect to O

ProBLEM 57  Determune whether or not either of the laws of
Examples 4 | and 4 7 1s distributive with respect to the other

PrOBLEM 58  Prove that U is distnbutive with respect to
N and that N 1s distnbutive with respect to U

6 THE NATURAL NUMBERS

There 1s one parttcular mathematical system of such fundamental
importance that it becomes very inconvement and cumbersome to
attempt to proceed much further without having 1t available for our
use Accordingly we shall now develop this system and its most
important properties Occasionally we shall mnterrupt this develop
ment to consider some general concepts

DeFINITION 6 1 The set N 1s the set of all natural numbers <>
(DI1EN
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(2) « € N has a unique successor, a* € N. The element a is
called the antecedent of a*.

(3) I has no antecedent

@ (a,b € N,a*=b*")=(a=Db)

(5) if M is a subset of N with the following properties: (1) 1 € M;
(ii) whenever a € M, then a* € M; then M = N.

The conditions given in Definition 6.1 are called Peano’s Axioms
or Peano’s Postulates. Condition (5) is called the Axiom of Mathe-
matical Induction, or merely the Induction Axiom.

Presently we are going to define two laws of internal composition
in the set N and prove various important properties of these laws. In
doing so, since this is a particular set, we shall use extensively the
particular properties it possesses. First, however, we prove a result
whose proof is very easy. To help the reader understand it, we point
out that the theorem implies that the only element of N which does
not have an antecedent is the element 1, and that the proof uses
Axiom (5). The set M used in the proof is slightly unusual but is of
a type occasionally useful.

THEOREM 6.1. (A EN,xZ1)=>dy €€ N 2D x=y").

Proor: LetM={i|lx € Nand (x=1lordy € N 3 x=y")}.
Then by definition of M, | € M. Now let x € M ; then x* € M since
x* is the successor of x. Hence, whenever x € M, then x* € M.

Therefore, by Axiom 5, M = N. n

ProBLEM 6.1. Prove that Va € N, a* # a. [Hint: consider
(a*)*.]

7. ADDITION OF NATURAL NUMBERS

The method used in giving the next definition is often called definition
by induction or by recursion. We define the concept for the natural
number 1. Then, for each natural number x for which the concept has
already been defined, we define it for x*. The reader might refer back
to Definitions 3.1, 4.1, 4.2, and Theorem 6.1 to verify that what we
do does define a law of internal composition in V.

DeriniTiON 7.1, (Definition of Addition of Natural Numbers)
abe N=

(N a+1=aq",
Q) a+b*= (a-+ b)".

THEOREM 7.1. N is closed under addition.
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PROOF By Defimtion 42 we must show that the mapping of
Definttion 7 115 a mpping of N X N into N Leta € N If we can
show tht ¥ b € N a+bis defined inda+b € N we shall have
proved the theorem

Let M={blb € N a+bs difined wnd a+b E N} By(l)
of Definuon 71 | €M since a+1=a* €EN Letb € M 1¢
a+b €N Then by (2) of Defimtion 71 a+b =(a+b)* EN
Therefore (b € M) = (b € M) Therefore by Axiom (5)
N=M L

THEoREM 72 Addition in N 1s 1ssociative

ProOF Leta b€ N If wecanshowthat V¢ €N (a-+b)
+c=a+{b+c) we shall hive established the theorem

Let M—{clce€N and (a+B)+c=a+{b+c)} Now
ta+by+1—(a+b) =a+b ~a+ (I +1) Therefore 1 €M
Now let ¢ € M 1e (a+b)+c—a+(b+¢) Then (a+b)+c
—ta+b)+¢] =a+ib+c) —a+(b+c )=>¢ €M There
fore (¢ € M) = (¢ € M) Therefore M~ N n

THeEOREM 73 Add ton in A 15 commutative

ProBLEM 7 1 Prove Theorem 73 (Hmt first prove by m
duction on ¢ that ¢ + 1 =1+ a then use ths as the first step in the
induction on b to prove thita+b— b +a )

PrOBLEM 72 Prove that (¢ b € N} = (a # a+ b)

8 THE CANCELLATION LAW
We now consider another example

EXAMPLE 8 1 A law of composition for the set L —{a b ¢}
1s defined by the mapping ¥Yx 3 € L (x })6=a If we denote this
law by V we have x Vy—a Y v\ € L The faw V 1s obviously
commutative and associative and we have in particular ¢« Vb —a
aVe=a Thatts :Vb—aVe but b# ¢ Ths is not the case
with most laws of composition with which the reader has had prevtous
acquuntance The more familiar case 15 the one covered 1n the next
defimtion

DEFINITION 8 1 Let O be a law of internal composition de
fined m a set 5 Then the feft canceliation taw for T holds for the
elementa € S [Vxy €S (a0x=al)) = (x—))]

In a similar manner we can define the right cancellation law If
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both right and left cancellation laws hold, then we say simply that the
cancellation law holds. Of course, if [J is commutative, the one will
hold if and only if the other does.

ProBLEM 8.1. Examine whether or not the cancellation laws
hold for the examples in Section 4.

ProBLEM 8.2. Give another example in which a cancellation
law does not hold.

THEOREM $.1.  The cancellation law holds for addition and all
elements of N.

PrOOF: We must show that Ya,b,c E N, a+c=b+c=
a=b.

Let M={cl|c € N and (Va,b E N,at+c=b+c=a=>b)}.
Then | € M, since a + 1 =a* and b + 1 = b* by Definition 7.1 and
a*=b* = a=0b by Axiom 4 of Definition 6.1.

Let c € M, and let a+c*=b+c*. Then a+ (c+1)=b
+ (¢ + 1), by Definition 7.1. So, (a + ¢) + 1=(b + c) + 1 by Theo-
rem 7.2: therefore, since 1 € M, a+ ¢=b + ¢. Hence, since ¢ € M,
a=b. Thusa + ¢* =b+ ¢ =>a=b. Therefore, ¢c* € M whenever
¢ € M. Therefore, M = N. )

PrROBLEM 8.3.  Prove, without using Theorem 8.1, thatV a, b, ¢
EN,a#b=a+c#b+ec.

ProBLEM 8.4. Prove that Theorem 8.1 is equivalent to the
statement of Problem 8.3.

TueoREM 8.2.  (Law of Trichotomy for N.) a,b € N =
exactly one of the following statements holds:
(Da=b
QD dceENDa=b+c
B Idde N3 b=a+d.

Proor:  First we establish that no two of these can hold simul-
taneously. By Problem 7.2, statements (1) and (2) cannot hold simul-
taneously, nor can statements (1) and (3). If statements (2) and (3)
did hold, then we should have b= (b+¢) +d=b + (¢ + d), which
is impossible (again by Problem 7.2). Therefore, no more than one of
these three cases can hold for two elements a,b & N.

Now we shall show that one case is always present. Leta € N
and let A = {b[b € N and one of the three cases holds for « and b} .

Eithera =1, orifa # 1, then by Theorem6.1 dc € N D a= c*,
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1e a=1-+c Thus ether case (1) or (2) 1s present for b=1 There
fore 1 € M

Now let b € M Then one of the three cases holds fora b We
shall consider each in turn and show that one of the three cases must
hold for @ nd b*

() a=b Then a*=5* 1e b*=a+1 So case (3) holds for
a and b*

(2) 3¢ € N 3 a=b+c We have two subcases to consider
If c=1 thena=b+1=p so we have case (1) for « and b* If
c# 1 thenby Theorem 61 e € N D c—¢ =1+e sowehave
a=b+{1+)=(b+1)+c=b*+¢ and we have cise (2) for
aand b

(MWIAdENDb=a+d Then b —(a+d) —(atd)+1
—a+ (d+1) and so we hve case (3) for aand b* Therefore b € M
=3b € M Therefore M — N ]

9 MULTIPLICATION OF NATURAL NUMBERS

DEFINITION 91 (Defimtion of Muluphcaton of Natural
Numbers)a b € N=
MhHha l-a
a b —(a b)+a

We shall frequently omut the symbol and understand that if
two elements of N are wnitten adjacent to each other they are to be
multiplied Further (f an expression tnvolves both addition and malti
plication 1t 1s understood that if there are no parentheses or other
symbols of inclusion the multiphcations are to be performed before
the additions Thus we write the [ast expression in Defimtion 9 { as
ab +a

THEOREM 9 1 N 1s closed under multpficatton
PROBLEM 9 1 Prove Theorem 9 | (cf proof of Theorem 7 1)

THEOREM 92 The Left Distnbutive Law of Multiphcation
with respect to Addition holds m N

ProoF By Definttion 53 we must show that Va b ¢ € N
a (b+¢)—ab+ac

Let a b € N and let M — {c|c € N and a(b + ¢} = ab+ ac}
Now a(b+1)~ab ~ab+a—a b+a 1| Therefore 1 EM
Now let ¢ €M Then alb+c)=alb+c)* —alb+c)+a=
(ab+ac) +a—ab+ (ac+a) —ab+ac* Therefore ¢ € M=
¢* € M Therefore M =N []
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THEOREM 9.3.  Multiplication in N is associative.

PROBLEM 9.2. Prove Theorem 9.3. [Hint: to prove (ab)c

= a(bc), use induction on ¢, and in considering (ab)c*, use Theorem
9.2.]

LEMMA: a, b EN=1-a=aandb*-a=b a+a.

PrROBLEM 9.3. Prove the above Lemma. (Hint: use induction
on a.)

THEOREM 9.4.  Multiplication in N is commutative.

CoroLLARY: The Right Distributive Law of Maultiplication
with respect to Addition holds in N.

ProBLEM 9.4. Prove Theorem 9.4. (Hint: use the Lemma.)

PROBLEM 9.5. Prove the Corollary to Theorem 9.4 directly
by using the method of the proof of Theorem 9.2.

10. RELATIONS

We are now going to give a precise definition of what is meant ab-
stractly by a relation. Two such relations are equality and inequality.

DEerFINITION 10.1. A relation R defined in a set S is a subset
R of § X S. We shall write aRb < (a, b) € R.

DeriniTION 10.2.  (Properties possessed by some relations.)
Let R be a relation defined in a set S. Then

(a) Ris reflexive &Y a € S, aRa

(b) R is symmetric < (aRb = bRa)

(¢c) R is transitive < (aRb and bRc = aRc).

. ExampLE 10.1. Let K= {d,e}. Then if R = {(d,d), (e,e)},
R is ordinary equality.

. ExampLE 10.2. Let K= {d, e}. Then if R={(d, ¢), (e,d)},
R is symmetric, but not reflexive or transitive.

EXA_MPLE 10.3.  Let K={d,e}. Then if R={(e,e)}, R is
symmetric and transitive, but not reflexive.

I?EFINITION 10.3.  Let [J be a law of internal composition de-
ﬁrTed inaset S, and R a relation defined in S. Then R is left compatible
withlle=a,b €S, Y¢cE€S,aRb=(ca) R (cO b); R is com-

patible with O a,b € S, Yc,d € S, (aRb, cRd) = (a I ¢) R
(b0 a).
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Right compatibility 1s defined 11t 2 similar manner Further equal
ity 1s companble with all laws of composition

TueorEM 101 1f R 1s a transttive and reflexive relation de
fined 1n a set $ having a law of internal composition 3 then R 1s com
patible with 0 & R 1 both left and right compatible with O

ProBLEM 101 Define right compatibility
PropLed 102 Prove Theorem 10 1

ProsLEM 103 Determune if R of Example 10 215 comp itible
with O of tlustrative Example 4 |

ProBLEM 104 Let H — {« b ¢} Find three relations defined
in H each i turn having one but only one of the propernies of Defint
tion 102

11 INEQUALITY IN N

Deenation 111 abENe>bIcENDa—b+e
a<bob>a azb@(@>boru—b) asbeb=a

THEOREM {1 ] a b & N=exactly one of the following
holds
Ma-b
Qa>b
Ba<b

ProoF  This 1s Theorem 8 2 restated 1n terms of mequality

THEOREM 112 a > b s a transitive refation in N

ProoF  We must show abcEN=(a>b b>c=
a>c) Nowa>b=IJdENDa=b+d b>=>TJeENDb

=c+e Therefore a=(c+e)+d—c+(e+d) by associativity
and 50 a > ¢ since e +d € N by Theorem 7 1 L]

THEOREM 113 a > b 15 compatible with addition and with
multiplication 1n N

In the next eight problems all letters represent natural numbers
If na problem one or more natural numbers must be excluded to have
the genernl statement hold the reader is expected to state such
exclusions

PrROBLEM 11| Provea+¢ >b+c=a>h
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PrROBLEM 11.2. Prove: a>b=az=b+ 1.

ProsLEM 11.3. Prove: a<b=>a+1=<0b.

ProBLEM 11.4. Prove: YVa € N,a= 1.

PROBLEM 11.5. Prove: a e N=3b&e N2 a<b<a+l.
PROBLEM 11.6. Prove: a < b+ 1=>a<b.

ProsLEM 11.7. Prove: ac > bc=>a > b.

PROBLEM 11.8. Prove: a,b E Nya>b=>Ac ENDa+c
=bh.

ProBLEM 11.9. Prove Theorem 11.3.
ProBLEM 11.10. Prove Theorem 11.4 below.

THEOREM 11.4. The cancellation law holds for multiplication
and all elements of N.

Our final theorem of this chapter is equivalent to the statement

that every nonempty set of natural numbers has a smallest number
m it.

THEOREM 11.5. Let L be a nonempty set of natural numbers.
Thends, € LB Vs & L,s = s,

ProOF:  Suppose that the theorem is false. Then for each
relLis,elds <t Let M={x[xeNand x € L and x < s,
Vs &€ L}. Thenl € M, since 1 < n by Problem 11.4, ¥V n € N and
if 1 € L, there would be, by the condition at the beginning of the proof
(implied by the supposition of falsity), a natural number s; < 1.

Let x € M. Then by Problem 11.3,x*=x+1<s, Vs E L. If
x+lel, then3y€ L 3 y<a++1,ie., y<x by Problem 11.6.
But since x € M, x < ysince vy € L. Therefore, A* € Lsoa* € M.
Therefore, » € M = x* € M. Therefore, M =N and L must be

empty, contrary to hypothesis. Hence, our supposition is false and the

theorem is true. -

ProsrLEMm 11.11.  Prove that if a set of natural numbers L satis-

fies: (V) nEL.Q2)(x €L,a>n)=>x* € L, then L contains the
set of all natural numbers = n.

PrROBLEM 11.12.  Prove that if a set of natural numbers L satis-
fiess (D1 €L, Q(eEL Va<i)=a1€ L, then L=N.



Chapter 2 Semugroups, Equivalence

Relations, and Rational Integers

In this chapter we consider semigroups and begtn our study of groups
To do this conveniently we consider some further propertes of
mappings stnce certain properties of many systems such as the
assoctat ve laws can be proved most easily by relating them to a set
of mipp ngs
Thea we ntroduce a genrerihzation of the dea of equahty an
equivalence relation which 1s of extreme importance In a great many
of our sub: We also il the concept of
1somorphism which tells us when two mathematicl systems are
abstractly 1dentic 1 We consider the formation of new systems from
old ones by taking set products 1nd quotient sets with respect to
l{ relations  also d are the mens by which laws
ot‘ composition tn the ald systems tnduce laws of compositton 1n the
new ones
Finilly we apply the ideas developed thus far to denve the system
of the rational integers nd we constder congruence modulo m 1n
thit system

I SEMIGROUPS

fn Chapter | we cons dered vanous general properties of sets and
developed the 1mportint properties of the particular mithematical
system of the natural numbers We shall not at present define a general
mathematic il sysiem but we now consider a very elementary mathe
matical system of a pener il kind

DEFINITION T 1 A semigro ip 15 a nonempty set S and an asso
crauve law of internal composition defined everywhere in §

We shall for most of this chapter denote tius law by [ and
denote the p by {(§ 1) Oc Ily 1f the law of compo
sihon 1s clear from the context we may denote the semigroup by S

16
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If [J is commutative, then we shall say that the semigroup (S;[3)
is commutative.

It should be emphasized that a semigroup is a set and a law of
composition. Often we encounter sets with two or more laws of
composition and it may be that the set and each of these laws form
different semigroups. For example, (N:+) is a semigroup; also
(N:-)is a semigroup and the two semigroups are different. For
brevity, we often shall refer to these semigroups as the additive and
multiplicative semigroups of N, respectively.

ProBLEM 1.1. Let P be the set of all subsets of a nonempty
set S.

(a) Prove that P and U form a semigroup.

(b) Prove that P and N form a semigroup.

ProBLEM 1.2.  Find three subsets of N which together with one
of the laws of composition defined in N form semigroups.

2. PRODUCTS OF MAPPINGS

In order to have some easy and informative examples of semigroups
and their properties, we shall now consider a law of composition for
mappings and investigate the important properties of this law. Hence-
forth, many of these results will be of the utmost importance.

In order to illustrate the definitions and theorems given, we
shall give first a particular set of mappings. We let H = {a, b, ¢} and
we let &, be the set of all mappings of H into itself. For any set with
a small number of elements, such as H, one convenient way of giving
such a mapping is to write two rows: in the upper put all the elements
of H, and in the lower below each element of H (in the upper row)
write its image. Thus, some of the mappings of .o, are:

(abc
cba)’

(abc) o= ((1[)(‘) _ (abc) _ (abc 5
abe )’ bea) B=\eab) ¥ = \acn)’
(ubc) = <abc) _ <abc) 0= (abc‘) __{abc
bac ]’ aaa)” " \aab)’ aba)’ K_<caa)'
A = (abc) _ (abc) _ (ab(‘) _ (abc).

cee ) baa)" 7 bbb)* T cee
The reader may easily complete the list. There are 27 such

mappings as a moment’s reflection will disclose.
The above method of exhibiting a mapping is not practical for

I

L

l

i

€
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a set having infinitely many elements such as N However if the
set has one or more lws of composition defined in it such as N does
a very useful way of gving o mapping ts by means of a formula Thus
one mapping call it a of N into itself 1s given by xa = ax + b where
a b € N this gives the image xa of each element of N

DrriniTiov 21 Let abe 1 mapping of a set § into aset 7 and
B be a mapping of T into aset U Then the product af 1s the mapping
of $into U defined by x(af) — (xx})8 /¢ €S

EXAMPLE 2 1 For the particular e y defined above (map
pogs of H mto usell) we have a{ay) = (aa)y=by—c blay)
—(ba)y=cy=b clay) = (ca)y=ay=a Thus by Defimtuon
32 of Chapter | ay—38 Or more compactly this product 1s

_ (llbt )(nbz ) - (nbr)(bm) - (ah( -5 clearl (ﬂht‘)
Y beaf\uth beaf\chat zbn) =8 since Y \ach

bea
and ((b") are the same mapping

PROBLEM 2} ind o wmd g
PrOBLEM 22 Show that Iy and {y wre both equal to {

ProBrem 23 Find ¢ show that the product of « and any
mapping £ € &; 1n either order 1s the mapping £

Prozlem >4 Find off and Ba where a and 8 are the two
mappings of N 1tself defined by xa = x + 2 ind x8 =3¢ + 4

THEOREM 2 | Let « be a mapping of § 1nto T B a mapping
of Tmto U yamappingof Unto I Then (af)y — a(By)

ProoF  Let x € S We apply Definttion 2 | repeatedly and
find that (af)y 1s the mapping 3 x[(aB)y] — [x(aB)]y — [{xa)Bly
Vx €5 alfy)isthe mapping 3 x{aify)] - (xa)1By) = [(xa)BlY
Y x €S Therefore by Defimtion 32 of Chapter | (af)y—
a(By) »

PROBLEM 25 For the mappings of ; find (3) afed) and
()8 (b) B(n6) and (Bn)6

ProgLEM 26 For a f as in Problem 2 4 and y defined by
xy—St+2 find a(By) and (aB)y

THEOREM 22 The set of all mappings of a nonempty set E into
uself and the product as defined in Defimtion 2 t form a semigroup

PROBLEM 27 Prove Theorem 2 2
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3. THE ASSOCIATIVE LAW GENERALIZED

Thus far we have considered composites of not more than three
elements of the system under consideration. For a composite of three
elements, ¢ [J b O ¢, we have the associative law which tells us that
whether we combine a and b first, or b and ¢, the ultimate result is
the same. If we have more than three elements, the situation becomes
more complicated. For example, with four elements, a, b, c, d, we can
combine them in different manners as follows: [(a D b) O] O d,
(«Ob)O(cOd), « O[pTO (cTd)]. The more elements there
are to be combined, the more different ways there are to combine
them. However, it is a remarkable fact that all the different ways
give the same result as long as the associative law holds for merely
any three elements. To prove this last statement would require an
extremely detailed analysis of the combinatorial possibilities, which
1s beyond the scope of this book and not needed in the book. We shall
merely prove a theorem (Theorem 3.1) which covers a very important
case and which is illustrative of the theorem needed in the general
case. To carry out the proof we shall define the composite of 2 elements
in one particular way and then show that certain other groupings give
the same result. First, however, we make a defimtion which will also
be useful later

DeriniTION 3.1.  Let n € N. Then a finite sequence of ele-
ments of a set E is {a,},=y,,, . as defined in Definition 4.2 of Chap-
ter 1, with order defined as: a, < a,& i < j; or, the set {ac }i=1,2,

o1
where ¢, € N and e, < de, &1 <.

Now we are ready to define a particular composite of a finite se-
quence of elements and do it by specifying that each new element
comes on the left and is combined with the composite of the others
alieady combined. We could do it equally well on the right. The
definition is of course by induction.

DeriNiTION 3.2, Let {a,},-12, .. be a finite sequence of ele-
ments from the semigroup (S:0), n € N. Then O, a,=a,, YV k
snmoand O, 0, =, 0 (O a,), for n = 1.

I {ac},o1,5,. . is a finite sequence of elements of the semigroup
($:0), then 0", ac, = OjL, b, where b, = ..

This last pait covers the case of composites in which the first
factor on the left does not have the subscript 1, and other cases.

In case 0=+, then O, a, is usually written S, a, In case
U=+, then O, 4, is usually written [T, a,.

The collecting of factors in this composite means that for four
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elements we tike the groupeag as a O (@, O (as 0l as)1

If we have a composite (a4, D)0 (a0 aDe) Oas O
(a; O ag) this could be wntten as a composite of four elements
b, 0b0Ob Db, where by=a,Da, by=a;NasOas by=uaq
b= d; (D a, This illustrates the notation of the next theorem

Tueorem 31 et 6,=0.a b=0lpma b=
Oy, ;414 be any grouping of the elements m the cOMposite T 4
where the ¢, € (S [3) which s a semigroup Then O a;= Ok, b;

PrRooF  We proceed by induction on n The theorem 1s ob
viously true if n = | and we shall suppose 1t true for any number of
a less than # (cf Problem {1 12 of Chapter 1} We distingussh two
cases

(D =1 Then b,=a, Then O by=b, [ (Okb) =a 0
{Oh.b) By inducton hypothesis D, by =Ty @ Therefore, by
Defimtion 32 Of b, =% a

(2) 1, > 1 Then let b, =y Then by induction hypothests
b, O (Ok.b) = (Ofead Now by the associative law and Defi
mtion 32« Otb O(OL b)) = (0, 0b,) O(CL8) =560
(3% 6) = Ok, b, But by the induction hypothests and Defimtion
32 a0 OO b))=a 00 a } = Oa  Therefore
0% a =05, b L]

ProBLEM 31 In the semigroup &, find the product ayn8 m
three different ways How do we know that &, 1s @ semigroup?

ProBLEM 32 Usmg a 8 of Problem 24 y of Problem 26
and & defined by x5 —4v+1 Yx € N find agyd n two different
ways

DEFINITION 3 3 In Defimtion 32 f o, =2 = Ta,—a
we wnite (0% ;= g" unless the law of composition [ 1s addition
i which case we wnite {usually) UL, ¢, = na In euther case n1s
called an exponent multiplicative or additive as the case may be a"
15 called a power of a

In Problems 33 34and 35 a b & (S [0) a semgroup and
aOb—b0a (Use induction i the proofs )

ProeLEM 33 Prove a"Oa"=a" *

ProsLEm 34 Prove (a")"=aq""

ProBLEM 35 Prove (aOb) =" (Ob"

ProBLEM 36 Ford; finda® & y* " o 6
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ProBrLeEM 3.7. Find o® for « of Problem 2.4.

ProBLEM 3.8. Prove: a € (§; [0), a semigroup, x =a",y = o,
hJeN=10Oy=yOax.

ProBLEM 3.9. For E € P, for P of Problem 1.1, find E” for
O=U and O= N.

4. SUBSEMIGROUPS

Frequently we shall have occasion to consider a subset of the set of
elements in a semigroup, and it will be of interest to know if this subset
and the original law of composition form a semigroup. To make this
consideration formally precise we introduce the following definitions.

DeriniTION 4.1.  Let [J be a law of internal composition be-
tween elements of a set S (cf. Definition 4.2 of Chapter 1) defined on
a subset 4 of § X §; we shall call the law induced by [J on a subset
T of §, that law of composition between elements of T defined on the
set of (\,y) of TXT 3 (a,y) € 4 and xJy € T, and which is
such that 1t makes the composite x (] y correspond to (x,y).

DerINITION 4.2.  Let (S: ) be a semigroup, T C S, and [J,
the l.aw of composition induced in T by [J. Then T and [J, form a sub-
semigroup of (S; ) & (T 0O,) is a semigroup.

It is vital to remember that to have a subset of a semigroup be a
sub'semigroup, the law of composition must be the same (i.e., it must
be induced in the subset) as that of the larger set. For example, in
N the set consisting of 1 and “” form a subsemigroup of (N -), but,
of course, not of (N; +).

: SOrI_letimes, for brevity, we may say that T is a subsemigroup of
the semigroup §, and by that we shall mean that the law of composi-
tion in T is understood to be as above.

~ In Pioblems 4.1 through 4.5 show that the given set of elements
is a s.ubsemlgFOUp of ;. If an English letter is given, that letter is
used in the future to refer to this subsemigroup.

PROBLEM 4.1. . {, o, 7.
PrOBLEM 4.2, S3t t, a, B, 7, 8, €.
PROBLEM 4.3, L.

ProBLEM 4.4 . a, B.

PrOBLEM 4.5. All powers of any particular element of ;.
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ProBLEM 4 6 Find three more subsemigroups of «f;

5 NFUTRAL ELEMFNTS AND INVERSE ELEMENTS

In N the element 1 has the property thata 1=1 a=«a Ya €N
Since nothing happens to another element when 1 1s combined with
1t by multiphicaion 1t 15 reasonnble 1o consider the element 1 as neutral
with respect to multiplication In s ¢ has the same property We
generalize this property in the next defimtion

DeFINITION 5 | Let (S5 0) be a semgroup Then ¢, € §
(ex € S)1s aleft (rnght) nentral clement of SV a € S e,Da=ua
(al] ¢, —a) e €S s aneatral element of § <= ¢ 1s both a nght
and « left neutral element of §

THeOREM S | If a semrgroup h s 1 neutral element the neutral
element is unigue

PROBLEM 5 1 Prove Theorem 51 {Hint let ¢ fboth be neu
tral elements and show thate — f)

PROBLEM 52 Guve four examples of semigroups which have
neutra) elements

PrROBLEM 53  Give four examples of semigroups which do nor
have neutral elements

PROBLEM 54 Show that { o r of # of Problem 4 1 are all
left neutral elements of # but that none 1s 1 nght neutral element—
hence that none 15 a nevtr! element

In Problem 44 «f — ¢ and ¢ 15 the neutral element of the semt
group in this problem So m 1 sense 3 undoes « and might therefore
be considered inverse to « In Problem 4 2 yy —¢ and so y1sitsown
mverse We generalize this

DeriniTion 52 Let (S (1) be a semugroup with a neutral
element ¢ Thena € § his aleft (nght) inerse<>Ab € S (c € 5)
D bh0a=e¢ (a0 c~e) The element b (¢} 15 called the left (r1s/it)
tmerse of a The element @ € § hs an im erse ¢ 1t has a left mverse
and a night inverse which 1re equal

The 1nverse of a ts usually denoted by « unless the law of com
position ts addition and then 1t is denoted by  a

THEOREM 52 g € (§ [) a semigroup with 1 neutral ele
ment has aleft inverse b and anght inverse c = b — ¢
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THEOREM 5.3. a € (S;([d), a semigroup with a neutral ele-
ment, has an inverse = the inverse is unique.

PrOBLEM 5.5. Prove Theorem 5.2.
PROBLEM 5.6. Prove Theorem 5.3.

ProgLEM 5.7. Find the neutral elements (if any) and the
elements which have inverses (if any) in (N; +) and in (N; -).

PROBLEM 5.8. Show that every element of S; of Problem 4.2
has an inverse.

PROBLEM 5.9.  Show that the only elements of &5 which have
inverses are the elements of S; (cf. Problem 5.8).

THEOREM 5.4. a, b € (§; ), a semigroup with a neutral
element, a=!, b~ exist = (a O b)texistsand (¢ D b)'=b"' N a™.

THEOREM 5.5. In a semigroup with a neutral element, the
left (right) cancellation law holds for each element which has a left
(right) inverse.

ProBLEM 5.10.  Prove Theorem 5.4. (Hint: show that b= O o}
1s an mverse and apply Theorem 5.3.)

ProBLEM 5.11.  Generalize Theorem 5.4 to more than two
factors.

ProBLEM 5.12. Prove Theorem 5.5.

ProBLEM 5.13. Using Theorem 5.5 and Problem 2.2, show
that { of &, does not have an inverse.

PrOBLEM 5.14.  Find three other elements of &, which do not
have inverses.

6. DEFINITION OF A GROUP

The mathematical system naturally suggested by the introduction of
the concepts of neutral element and inverse is a group. We shall give

!hree equivalent definitions of this very important system (and a fourth
in a problem).

DeriNiTION 6.1a. A semigioup (G: [1), with a neutral element
and an inverse for each element, is a group. The order of the group
(G: ) is the number of elements of G. A group (or semigroup) is
called finite < it has only a finite number of elements.
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DEEINITION 6 1b A group 1s a set of elements G and a law of
mternat composition O which satisfy

MW Vab€G AceGaaulb=c

MY¥abece 6 alDWO=(0bm 3¢,

3)AecG3 /a€EGCG alle=ela=a

W VaeGda'EGda'Da=aba'=¢

DEFINITION 6 ¢ A group 1s a nonempty set of elements G
and 1 1w of internal composition [J which satisfy

MVabeGIAceGaalb—c

QYabceEG alBOdd=(«0HOc

BHWYabeEGAxy e G3eDx—byha=bh

DEFINITION 6 2 A subgroup of a group G 15 a subsemigroup
of G which s a group

THEOREM 6 1 A finite semtgroup 1n which the cancellation
1aw holds for exch element s 1 group

PROBLEM 6 1 Prove that Definitions 6 la 6 1b and 6 Ic are
equivalent (Hint the most difficult purt of this 1s showing that Defi
nton 6 t¢ = Definon 6 Ib To do this first show that for a par
ticular element ¢ there exists 1 neutril element for ¢ Then show that
thts neutral element for @ 15 a neutrl clement of the group )

PROBLEM 6 ° Prove Theorem 61 (Hint let a; a s
be the distinct el ts of the group Form the pi of all
these by one of them and show that Definition 6 I¢ holds )

PROBLEM 6 3 Prove that a semigroup § which siusfies the
following two conditions tsagroup (I} de 3¢ Da—a Ya ES
N VaeS g 3¢ Ua=e

ProBLEm 6 4 Determine which of the semigroups so far con
sidered are groups

PROBLEM 6 5 Prove that the cancellation 1aw holds for every
element tn a group

ProBLEM 66  Let S be a semigroup with a neutral element
Prove that the set of all elements of § which have tnverses in § form a
subsemigroup of § and that this semigroup 1s a group

ProsLemM 67  Prove that $y of Problem 4 2 1s a group

7 A THEOREM ABOUT MAPPINGS
THEOREM 7 1 The set of all 1-1 mappings of a nonempty set
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E onto itself and the law of composition of Definition 2.1 form a
group.

ProoF: We shall show that the conditions of Definition 6.1b
are satisfied.

Condition 1. Let «, B be any two 1-1 mappings of E onto itself.

First, we shall show that o8 is a mapping of E onto itself (it is
of course a mapping of E into itself). Since «, 8 are mappings of E onto
itself, givenanyx” € E,dx' € E 3 x"=x'Banddx € E 3 x' =xa.
Then x" = x'8= (aa)B =x(aB). So 1" is the image of x under ap.
Therefore, of is a mapping of £ onto itself.

Secondly, we shall show that af is a 1-1 mapping. Given x" € E,
from the above we know that 3x € E 3 x”"= a(aB). Suppose that
for some y € E, 2" =y(aB). Let y' = ya; then x" = y'@. Since B is a
1-1 mapping, y' = x’, so x’ = ya. Since « is a 1-1 mapping, 1 = y.
Therefore, off is a 1-1 mapping.

Condition 2. This follows from Theorem 2.2.

Condition 3. We define t by Vx € E, xe = 1. Then ¢ is obviously
a 1-1 mapping of E onto itself. Now Vx € E, x(ta) = (xt)a =2ra=
w=gq. Also i(at) = (Aa)t =21, since xa € E. Therefore, at=1
=1x. Therefore, ¢ 1s a neutral element.

Condition 4. Let « be any 1-1 mapping of E onto itself. Let 8 be
defined as follows: givena € E, 18 is the element x' € E determined
by x=1'c. (This 1’ exists since « is an onto mapping, and there is
only one such '’ since a1s a 1-1 mapping.) Then agisdefined V1 € E
and so B8 1s a mapping of E into itself.

Suppose 3,y € E3 2" =a8.x' = yB. Thenx='eand y = x'«
and so a = v. Therefore, 8 is a 1-1 mapping.

Next, given Ao’ € E. we wish to show that 31 € E 2 1" =x8.
Now 1’ =181 =2a'a. Since « is a mapping of E into itself, given
A EE,d2 € E 3 x=21"aand so x' = xB. Therefore, 8 is an onto
mapping.

Lastly, this mapping B8 which we have established as a 1-1 map-
ping of E onto itself, is the inverse of «. For by proceeding as above
foranyx € E,x" = 8, we have X{(Ba) = (xBa=x"a=x=x1. Also,
for any \' € E, A =1'a, and so AaB)=Q'a)B=xB=21"=21"t.
Therefore, Ba = af = ¢. Hence, 8 is the inverse of «.

Therefore, the set and the law of composition form a group. -

8. EQUIVALENCE RELATIONS

Certain properties of relations were discussed in Section 10 of Chap-
ter 1. We now introduce a name for relations which possess some of
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these properties

DEFINITION 8 1 A relation R defined in a set S 1s an equn
alence relation ¢ R 1s reflexive symmetric and transitive

Thus for many purposes an equivalence relatton acts like equahty
which of course 1s 1 particular equivalence relation Any equtvalence
relatron determines 1 separation of the set S into a collection of subsets
of a kind which we now define

DEFINITION 8 2 A partiton 11 of a set § 1s a collectton of
nonempty subsets such that
(1) S 1s the union of all the sets of I1
(2) every two distinct sets of [1 are disjoint

THEOREM 8 | An equivilence relation R defined in a non
empty set § determines a partition of S

Proor VYa €S let C,—{x[x €S and xRa} C, 15 non
empty since by reflexivity a4 € C, Also sincea € C, $1sthe unton
of the C Fmallylea C, N C, # @ letd € C N C, Then dRa
dRb Now let v € Cy Then vRb bRd =\Ra by the symmetnc
and transitive properties of R Thus v € C, and s0 €, € G, Sim
larly C, C C, Therefore C,— C, Thus we have established that
either C, N Cpy— D or C, ~ C, Therefore the disinct C, a €5
are disjoint Therefore the collection of all the distinct C, ts a partttion
of § [

The sets C, are worthy of a name

DeriNITION 83 (a) The sets of a partitton of a set S deter
mimed by an equivalence relation R defined in § are equnalence
classes d by R called eq classes
modulo R

(b) The set of these equivalence classes 1s called the quotient set
of S by R and 1s written S/R

An equivalence relation and a partitton are essentally the same
Theorem 8 1 goes halfway in establishing this and the next theorem
completes the process

THEOREM B2 A partitton 1 of a nonempty set § determunes
an equivalence relation R in S when R 1s defined by (aRb & a b €
the same subset in IT)

ProsLem 8 1 Prove Theorem 8 2
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ProBLEM 8.2. For the set H of Example 4.3 of Chapter 1,
consider the partition H = {a} U {b,c}. Determine whether or not
the equivalence relation determined by this partition is compatible
with the law of composition given in the example.

Soon we are going to develop the system of the rational integers.
To do this we shall find it convenient to use certain general methods
which are useful in many developments. Among these methods are
two by means of which we frequently obtain new algebraic systems
from previously known ones. One of the methods uses the set product
of Definition 4.1 of Chapter 1, and the other uses quotient sets and
equivalence relations. We now consider the first method.

9. SEMIGROUP PRODUCTS OF SEMIGROUPS

DerFmniTION 9.1, Let (S; ) and (T; O) be two semigroups
(groups). Then the semigroup (group) product of {(S; 0) and (T; O),
written § X T, is the set of all ordered pairs (s,?) where s € S and
t € T, with a law of internal composition A defined by (s, #) A
(Sa. 12) = (s, O 50,1, O 1,).

THeorEM 9.1. The semigroup {(group) product of two semi-
groups (groups) is a semigroup (group).

ExaMpPLE 9.1. Let K, = {i,a, 8} and K,= {¢, vy}, considered
as subgroups of ;. Then the group product of these two groups con-
sists of the elements (¢, ¢), (1, y), (a, 1), (o, ), (B, 1), (B, vy) with the
composites of a few of these elements as follows: (¢, ) (8, y) = (B, 1);
(a.¥)(B.1) = (1, ), etc. The group product is of course a group.

. ExAMPLE 9.2.  We can consider N X N as a semigroup product
m more than one way since there are two laws of composition defined
In N. With addition, we have (a, b) + (¢, d) = (a + ¢, b + d) and with
multiplication, (a, b) - (c, d) = (ac, bd). We shall presently consider

rather extensively N X N with addition so defined but with a different
law of multiplication.

ProBLEM 9.1.  Prove Theorem 9.1.

’ PP:OBLEM 9.2, Let Ky={.,8}, K;={, €}, as in ;. Find
KN: X Ky, Ky X Ky, K3 X K, where K., is given in Example 9.1 above.

ProBLEM 9.3.  Find K, X K,, where K, is given in Example
9.1 above.
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ProsLEM 94 Find Ay X A, with A, of Example 9 1

ProsLFM 9§ Prove thatif A, L are subsemigroups (subgroups)
of two semuigroups (groups) § T respecttvely then A X L 1s a sub
semigroup (subgroup) of § X T

10 COMPOSITION TABI E OF A SEMIGROUP

By the composition table of a semigroup we mean a rectangular array
with eich column labelled with one element of the semigroup each
row Ibelled with one element of the semigroup nnd the entry in the
mtersection of the row labelled x with the column labelled 3 being
the i x[3) The composition table of the subgroup K, of
5 15 given here

ProBLEM 101 Construct the composition table for A; X K3
and A; X A, of Problem 92

PropiEM 102 Construct the composition t tble for the sem

group of the foll pptags of {a b ¢ d) wto usell
e wh _ (ub(d) _ (ub(d)
o o o ¢ where w beda abed, Show that it Is a group

Prosirst 103 Construct the composition table for K X &,
of Example 9 |

ProsLEM 104 Construct the composition table for Sy of
Problem 42

[t should be observed thit in the composition table of a group
each element of the group appears exictly once 1n eich row and ex
actly once 1 each column This follows from Problem 6 5 This may
not be the case n 1 semtgroup Also n the composition table of a
group or a semigroup if the elements wre given in the s wme ordet in the
labelling row as 1n the labelling column then the law of composition
of the group or semigroup 1s commutative 1f nd only 1f the table 15

symmetnic with respect to the diagonat running from upper left to
Tower right
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11. HOMOMORPHISMS AND ISOMORPHISMS

In abstiact algebra we concern ourselves mainly with those properties
of algebraic systems which depend on how the elements of a system
combine with each other and we are usually not concerned with other,
more concrete, properties of the elements. Thus we introduce a term,
1somorphic, to denote two systems such that we can establish a 1-1
correspondence between the elements so that corresponding elements
combine similarly. Isomorphic systems, for many purposes, are con-
sidered identical. We now define this and make a generalization.

DeriviTioN 11.1. Let (§; ) and (7T; O) be two semigroups.
Then a mapping « of S into T is a homomorphism of Sinto T <> V¥ sy, 5,
€S, (50s) a=(5;2) O (s: ).

The mapping a is a homomorphism of (S: ) onto (T; O) © «
is a homomorphism of § into T, and « is an onto mapping. Here, we
say that T is homomorphic to S. (We use this for brevity; when the
laws of composition are understood. For completeness we should say
(T Q) is homomorphic to (S:).)

The homomorphism « 1s an isomorphism of S onto T, or an iso-
morphism between S and T < « is a 1-1 mapping of S onto 7. Then
and only then we say that S and T are isomorphic.

A homomorphism of S into itself is called an endomorphism.

An 1somorphism of S onto itself is called an automorphism.

ExampLE I1.1. Consider K, = {¢, v}, K3 = {1, 8}, as subgroups
of §;. If we define the mapping A by 4 =, y4 = §, then 4 is an iso-
motphism between K, and Kj. It is obviously a 1-1 mapping of K,
onto K;. To establish the composition preserving property, we must
consider all possible composites of two elements of K, and show that
each such composite is mapped onto the composite of the images
undei 4. There are four such composites: ¢« ¢, ¢t - y,y - ¢,y - . They
are equal to, respectively, ¢, v, v, t, and are mapped onto ¢, §, §, t. On
the other hand, (14)(LA) =t - t=1, (tA) (yA) =1 - 5=, (vA) (LA4)
=8-1=8, (yA)(yA) =8 - 8§=1. Therefore, 4 is an isomorphism
and K, 1s isomorphic to Kj.

The method used in this example can become rather tedious.
Another method, often more convenient in the case of systems with
only a few elements, is to use the composition tables of the two sys-
tems. If we have two semigroups, each with n elements, which we
wish to show are isomorphic, then let us arrange the composition tables
as follows: in the ith position of the labelling row of the second semi-
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group table phce the element which 1s the image under 1 supposed
1somorphism of the element in the /th place of the hbelling row of the
first semugroup tible fore—1 2 n operate tn a Sumular manner
on the columns Then the supposed 1somorphism will actually be an
isomorphism if and only if e ich entry 1n the body of the second table
1s the 1mage of the efement 1n the same position m the first table In the
case of groups with large numbers of elements usually the most prac
hical way of establishing an 1somorphism 1s by the use of formulae

ProBLEM 111 Show that A, X Ay A, X Ay Ay X K, of Prob
tem 1 1 are 1somorphuc

ProsLem 112 Show that the group of Problem 102 i1s not
1somorphic to any of the groups of Problem 11 1

ProBLEM 113 Show that §, of Problem 4 * 45 not 1somorphic
to K X A, of Problem 103

ProLEM 114 Prove f § 15 a semugroup homomorphte 1so
warphic) to T wad T s homamorphie (somorphie 10 U then S1s
homomorphic (1somorphic) to U Use this to prove that the relation
of being homomorphic or 1somorphic 1s 10 equivalence relton in the
set of all semigroups

ProsLEM 115 Show that Sy of Problem 4 7 1s homomorphic
to A, and A, Note that the mappings giving these homomorphisms
of S; nto A, and A; are endomorphisms of S, since A, and K, are
subgroups of Sz Show that $; 15 nor homomorpluc to A,

PrOBLEM 116 Show thut for A ot =g Beaisan
automorphism (Note the symbol + 1s used only for | 1 mappings )

Notice that in Problems 11 7 through 11 11 a s a homomorphism
of a sermgroup S mto a semigroup T

PRORLEM 117 Prove that Sa (¢f Defimtion 3 | of Chapter 1)
and the law of of T form a oup of T

ProBLEM 118 Prove that if S has a neutral element e then
ea1s a neutral element for So

ProBLEM 119 Prove that if § has 1 neutral element and if
a € 5 has an mverse (or a left or nght inverse) then that nverse
must be mapped onto an element of T which 1s an verse for ae

ProBLEM 1110 If 5 1s a group prove that S Is a subgroup
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ProBLEM 11.11. If T has a neutral element, prove that the set
of all elements of S which are mapped onto that neutral element is a
subsemigroup (subgroup if S is a group) of S.

Having the concept of isomorphism available we can now define
precisely what we mean by extending an algebraic system in the case
of semigroups.

DEFINITION 11.2.  The semigroup S is imbedded in the semi-
group U & 3 a subsemigroup T of U 2 S and T are isomorphic. The
semigroup U is called an extension of §.

ProBLEM 11.12. Prove that if § and T are two semigroups
with neutral elements, then § and 7 are both imbedded in § X T.

12. INDUCING LAWS OF COMPOSITION
IN QUOTIENT SETS

We are now going to consider the second method of extending alge-
braic systems as discussed at the end of Section 8, namely by means
of taking quotient sets. The most vital condition is compatibility of the
equivalence relation used in forming the quotient set, with the law or
laws of composition in the original set.

THEOREM 12.1. Let E be a set closed with respect to a law of
internal composition (J, and let R be an equivalence relation defined
in E and compatible (cf. Definition 10.3 of Chapter 1) with [J. Then
a law of internal composition (J can be defined in £/R such that

(1) EIR is closed under [J,

(2) ford,B,C € E[IR,AOB=C&Va€A,VbeEB,Ic €
C3alb=c.

This law (J is said to be induced in E/R by (J of E.

 Proor:  Tofind4 OB, forany 4,B € E[R,letx € 4,y € B.
Slr}ce E is closed under (0, 3z € E 3 1 O y=1z Since E is the
union of the sets comprising E/R, 3C € E/R D z € C. Then we
define 4 O B = C. Now we wish to show that C is independent of
the particular x and y chosen from A and B, respectively. Let a, b be
any elements of 4, B. respectively. Then xRa and YRb. Now R is, by
hypothesis, compatible with [J, and so aRa, YRb= (x O y)R(a O b)
=R(a0b)=aOb € C. Thus, C is independent of the choice

of the representatives of 4 and B, and so we have the final statement

in the theorem.
|
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TneorrM 122 Under the conditions of Theorem 12 1, if Oss
associative, then U 15 associative

Tueorear 123 Under the conditions of Theorem 121, :f O
1s comsmutative, then [11s commutive

THFOREM 124 Under the condiions of Theorem 121, if E
15 closed under A. a second law of internal composition 1f R 1s com
pitible with A and «f A 1s left {right) distnbutive with respect to T
then 1f & denotes the law induced in E/R by A we have & as left
{night) distnibutive with respect to g

PROBLEM 121 Prove Theorem 122
ProBLEM 122 Prove Theorem 123
ProBLEm 123 Prove Theorem 124

ProBLEM 124 Prove that under the conditions of Theorem
121 of E has & neutral element then E/R has a neutral element Con-
sider inverses

We are going to consider N X N fo obtain the system of the
rational 1ntegers but the next result may just as well be stated under
more general conditions so we do <0 The reader mght for ease in
following the proof thunk of § as N and of D as +

THEOREM 125 Let (§ () be a commutitive semigroup in
which the cancellation law holds for each element end let L=§ X §
be the semugroup product of § withtself Then (¢ 5)R(¢ dy = ald
= b0 ¢ 15 an equivalence relation defined in L and compatible with T,
the taw of compoymon nduced 10 $ X S by O (CF Defimuon9 1)

Proor First, we prove that R 1s an equivalence relation in L

(1) R s reflexave since ¢ O &= 60 q, since S ts commutative

(2) Rissymmetric smcea Od=60 ¢ =cOb=d[Ia, since
§ 1s commutanve

(3) Ristransitive {a B)R{c dY (¢« DHR(e H=2aTd=»bT ¢,
and ¢ Jf=d e Muluplying the first of these equations by f on
the night and the second by b on the left we hawveo 1dOf=560¢
Of,bDcOf=b0d0e whencewehavea Dd O f=p0d0e
=aOf=b0e¢, by commutauvity and cancellation law There
fore, (a,b)R(e f)

Now to show compatibility (a,5)R(c d)=alld=b0c
(e./IR{g, k)= e D h=fg Now(a b) 0 (e.f) =(a D¢ b0TN,
(e,d) O {g,)=(cOg,d0 k) To demonstrate compatibthty we
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must show that (a, b) O (e, HR(c, d) 0 (g, ). But this follows im-
mediately from the last four equations above by commutativity and
associativity. -

DEFINITION 12.1.  For N considered as an additive (a multipli-
cative) semigroup, R of the above theorem for N X N will be denoted
by R, (by R»).

ProBLEM 12.5. For R, (R.) as above, find several elements
in the equivalence class containing (1, 5). Show that (7, 4) R,(3, 6) for
i=1,2.

PrOBLEM 12.6.  Carry out the proof of Theorem 12.5 for N X N
and addition; for N X N and multiplication.

We now state a theorem about N X N, using a different multipli-
cation, not the one induced by that in N.

THEOREM 12.6. In P= N X N, with N as an additive semi-
group, we define (a,b) - (c,d) = (ac + bd, ad+ bc). Then P is
closed with respect to this law of composition and R, is compatible
with it.

PrRoOBLEM 12.7. Prove Theorem 12.6.

ProsLEM 12.8. Prove: in P’ =N X N, with N as a multipli-
cative semigroup, define (a, b) + (¢, d) = (ad + bc, bd); then P’ is
closed with respect to this law of composition and R, is compatible
with it.

PROBLEM 12.9.  Prove the following generalization of Theorem
12.5.

THEOREM 12.7. Let (§; ) be a commutative semigroup, S *
be the set of elements of S for which the cancellation law holds,
§™# O, M=5 X S§*, the semigroup product. Then (a, b)R(c, d)
aUd= b0 cis an equivalence relation defined in M and compatible
with [J, the law induced in § X S~ by [J, as in Definition 9.1.

In this chapter we shall apply the next theorem only to N, and so
$* will also be N. Thus the reader may think of this in reading the
proof. We shall state and prove it in more general form.

THEOREM 12.8. Let (S: ) be a commutative semigroup, S =
the set of elements of S for which the cancellation law holds, S~ non-
empty. Then there exists a commutative semigroup T such that

(1) Sis imbedded in T,
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(2) T has 1 neutrd element
M res*=>4dx'€T
(4) T 15 the smalest sermgroup h wing properties (1) (2) and (3)

Proor  To awoud needlessly complicated notition we shall use
O to wmdicnte the 1w induced 1a N X N by O and {(« 11} to denote
the equivalence clivs contuning (u 1)

Let 7 — (S x §*)/R where R 1s the equivalence refation of Theo
rem 127

(J) Let B be the set of all equivilence classes containmg all
elements (# 3y v) where n € § 1+ € §* We shall prove that s —
{(« T +)|¥ € $*} 1s an 1somorphism

Furst we note thit o1l {# D1 1) belong to the same equivalence
chss since « 0y Oy —v OOy, = (0 ROy, 1) and
the equitions hold since § . wsoctitive and commutative Now let
= {r Dy v ) and iy — {1y 1)} ind suppose (1 O1,3y)
RO vy Then w0, Oup=1 O O, =u — 1, smee
v 13 € §* Therefore the mappingis 1 | and it 1s onto by defimtion

Thata Do = {{a: D31y v )} T {(ut; vy 1,)} where Ois the
Jaw 1nduced i T by[] ts obvious Therefore we have anisomorphism
between W wnd § wnd since T 1s t semigroup S 15 imbeddedin T

{7y The equivalence class contunmg (n u) for my w € 5* 18
the neutril element of 7 For (s v} O (n v )= («0n 1 3y)IR
(u 1) Therefore {{e 11 T {tn 11} = {le }}

(Y Foru€S* (wldy YO0 al)— Oy Ch v Oal)
Riu w}R(G v ) Therefore {(« 0y IO {0 w0} ={0n u}}
Therefore 1f « € §* sts image in T under the 1somorphism of part
(1) of the proof has an mverse Hence by idenufying u with that
tmage « has an inverse n T

(4) Let V be the set of 4ll equivalence classes which are inverses
of el of T corr to el of §* We shall show that
condition (4) of the conclusion of the theorem holds by showing that
every elment of T 15 the composite of an element of W and an element
of V' From this (4) will follow since any senugroup having the first
three properties must contain all these composites

Let (¢ b) be any element of § X $* and let + w € §* Then
(@ BYR(aDv »)O(w wOb)— (@ O¢ O » On Ob)  since
aDvDuwDb~bDaD v Du since § s associative and commuta
tive Therefore each equivalence cliss of 7 1s the compostte of an
equivalence class of W siace (a Oy 1) 15 a representative of such a
class and 1n equivalence class of I since (u 4 [ b) 15 a representa
five of such a chss becse u b € S* [ ]
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CorOLLARY 12.1.  If the cancellation law holds for every ele-
ment of S, then the semigroup T, of Theorem 12.8 is a group.

COROLLARY 12.2. The additive semigroup of N can be im-
bedded in a group.

ProBLEM 12.10. Go over the proof of Theorem 12.8 with N
as S, addition as [(J, and R, as R; also with N as §, multiplication as [,
and R, as R.

THeoREM 12.9. The multiplication in N X N, as defined in
Theorem 12.6, is associative, commutative, and distributive with
respect to the addition induced in N X N by addition in N. Further,
the multiplication induced in (N X N)/R, by this multiplication in
N X N is associative, commutative, and distributive with respect to
the addition in (N X N)/R, induced by the addition in N X N.

PROBLEM 12.11. Prove Theorem 12.9. (Hint: use Theorems
12.1 through 12.4, and other results.)

13. DEFINITION OF THE RATIONAL INTEGERS

DEFINITION 13.1.  (The Rational Integers.) The additive group,
Z = (N X N)/R,, whose existence is established by Theorem 12.8
(with 0 =+) and Corollary 12.1, with multiplication defined in Theo-
rem 12.6, is called the ring of rational integers. An element of Z is
called a rational integer, sometimes, when the context is clear, merely
an integer. The additive neutral element of Z will be denoted by 0, and
the additive inverse of ¢ € Z by —a. Finally, for brevity we shall
usually write ¢ — b for a + (—b).

THEOREM 13.1.  The elements of Z and addition form a commu-
tative group; the elements of Z and multiplication form a commutative
semigroup with a neutral element, usually denoted by 1; the cancella-
tion laws hold for addition for every element, and for multiplication
for every nonzero element: multiplication is distributive with respect
to addition: the additive semigroup of N and the multiplicative semi-
group of N are imbedded in the additive and multiplicative (respec-
tively) semigroups of Z.

ProOBLEM 13.1.  Prove Theorem 13.1. (Most of the theorem has
been proved. The cancellation laws and the imbedding statement have
not. For the latter, use the mapping a <> {(a+1,1)},Ya € N.)

Since by Theorem 13.1, N is imbedded in Z, we can refer to N
as being contained in Z for all properties involving addition and multi-
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pheion As forthe less than rehon we now generalize 1t 10 Z and
i doing so leawve unchanged all that we hd for N in this connection

Defivition 132 For my ¥ € Z v s an equivalence class
determined by n ordercd pur (@ b) € N X N We shall say that x
1s Josine <> a > b and say thit v1s megame < a < b 1f x1s posi
tive we write x > 0 1f negiive v <0 For iy vy €E Z we wnte
x>yvery—y >0 v=ye(v>)y or y=3) lastly we shall use
Z*todenote the sctofall . EZ 3 >0

THEOREN 132 Every rittontl integer is exictly one of the
following positive negative or zero

THEOREM 133 The elements of V ire those rtional integers
which are posnive

TuroRem 134 The relition < s transiive and 1s com
pattble with addition 1n Z (However we do not have complete
compiibdity with multiphication )

Tucorem 135 a bt J€Z a>h >0 d<O=ac>
be ad < bd

ProsieM 137 Prove Theorems 132 (33 134 nd 135

ProsLEM 133 Consider the statements 1n Problems 111
through 11 8 of Chapter | with repird to whether they haldin Z Make
my alterations necessiry to hive them hold in Z f that 1s possible
Then prove the altered st itements

PROBLEM 134 Restate and prove for Z Theorem 115 and
Problems 11 11 and 11 12 of Chapter 1

PROBLEM 135  Prove «€Z a<0=3bEZ*Da=
(=Db a+b-0

14 ABSOLUTE VALUE OF RATIONAL INTEGERS

DeriNimioN 141 Leta € Z Then o] —aif ¢ =0 |aj——a
fa<@

THEOREM 141 o b € Z=5|a+b| < |a) + |b| |ab] = |all6]

PrOBLEM 14 1 Prove Theorem 141 (Hmt one way is to
conyider four cases )
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15. EXPONENTS

Previously we defined (Definition 3.3) exponents and powers with
natural numbers as exponents. We now generalize this to rational
integers as exponents and do it in a general semigroup with a neutral
element e.

DermiTioN 15.1.  Let (§; ) be a semigroup with a neutral
element ¢. Then O,.yy a,= ¢, a, € S; multiplicatively, a® = ¢, where
0€ Z If n € Z~, a" is defined as in Definition 3.3. If ¢ € § has an
inverse a~!, then for m € Z*, a™ = (a=')™ (cf. Problem 13.5).

THEOREM 15.1. Let a,b € (5:[3), a semigroup with neutral
element. Let ¢, b' €S and a0 b=ba. Then Vn,m &€ Z,
(1) a" D am —1 an+m’

(2) (an)m — anm’

) (a0 b)r=a" 0 b".

ProBLEM 15.1. Prove Theorem [5.1. (Hint: use Problems
3.3,3.4,3.5)

PrROBLEM 15.2.  Write out the statements of Definition 15.1 and
Theorem 15.1 for (0= +.

I6. DIVISIBILITY IN A SEMIGROUP

In this chapter we are principally interested in Z, but it is essentially
as easy to give definitions about divisibility in a rather general semi-
group as it is in Z, so we shall do so.

In the following eight definitions, S is a semigroup with a neutral
element and the law of composition is written as multiplication.

DeriniTiON 16.1.  a € S, a is a left (right) multiple of b € S
“3dc €85 3 a=cb (a=bc). Under these conditions, b is a right
(left) divisor of a. If multiplication is commutative in S, we simply
say. multiple and divisor, and write, b]a.

. PROBI:EM 16.1.  Find three examples of multiples and divisors
m the semigroups studied thus far.

s DEFINITION 16.2.  a € S, a is a unit in S < a has ap inverse
in§.

PROBLEM 16.2.  Prove that the only units in Z are =1.
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DEFINITION 163« b € § are associates 11 §<Ta unt
#ESDu=buora=ub

PROBLEM 163 Prove o € Z=>the only associates of a
n Zare a and —a

ProBLrM 164 Prove that the relation of being associates 1s
an equivalence relatron

DerinTION 164 Let b € S and let b be 1 divisor of @ Then
b 1s 1 proper dnisor of a &
{1} b1s not an ssoate of o
(2) b1s not a umt

DeiNiTIoN 165 a € S s trreducible n S &
(1) ¢rsnotaumtm§
(2) a has no proper divisors in §

DertnITION 166 Let § be commutitive ind let the cancel
fation law hold for every element of § Thenif pisnotaumt p €S
1saprimen S & (plab @ b € 5=senher plaor pib) Anelement of
Z1s a pnme if and only 1f 1t 1s 1 pnme in the multiplicative semigroup
of Z with z¢ro excluded

The reader may have encountered a definttton of prime whichts
the above defimition of rreducible element We shalt show that in Z
the property of being irreducible 1s equivalent to the property of being
prime In some algebraic systems the two properttes are not equivalent

DEFNMTION 167 d € § d 15 a greatest common left {nghty
divisorofa b € S &

(1) d1s aleft (rnght) divisor of a and of &

2y f €S fisa left (nght) divisor of a and of b =>d 1s a nght
{lefty muluple of f
If § 1s commutative nght and left greatest common divisors coincide
(We abbreviate left greatest common divisor by lged etc)

It should be noted that this defimition 15 in terms of divisibthity
alone The reader may have encountered defimtions of greatest com
mon dwisor and least common multiple of two integers 1n which the
condttions were given in terms of magnitude Such defimtions do not
generalize gasily to other algebraic systems Definttion 16 7 does

DeFINITION 16 8 m € § mi1s aleast common left (right) mud
npleofa b€ S
(1) m1s a left (nght) multipte of ¢ and of &
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(2) A € S, kis a left (right) multiple of a and of b = m is a right
(left) divisor of 4.

If S is commutative, right and left least common multiples coin-
cide. (We abbreviate by l.lL.c.m., etc.)

PROBLEM 16.5. Prove: a,b,c € S, cla, clb=c|(a+b), c|
(a—b).

PROBLEM 16.6. Prove: a, b,c € S, asemigroup, (c|a orc|b)=>
clab.

PrROBLEM 16.7. Prove that in a semigroup, the relation a|b is
reflexive and transitive.

17. DIVISIBILITY IN Z

In the next exercises, some of the particular properties of Z are
necessary.

ProBLEM 17.1. Prove: a,b € Z, a is a proper divisor of
b+#0=>|a| < |b|: thus, a,b € Z, a # 0= |ab| = |b|.

PROBLEM 17.2. Prove: ry,rma € Z,0=n<a,0srnp<a=
Iry =1} < a.

_ ProBLEM 17.3. If M is a set of nonnegative rational integers
with the properties 0 € M and x € M =x+ 1 € M, then M is the
set of all nonnegative rational integers.

. We next state and prove the division algorithm for Z. The proof
given needs to be modified only slightly to hold in some more general
algebraic systems.

THEOREM 17.1. a,bE€ Z,a=0,b>0=9 unique q,r € Z
Sa=bg+r,q=0,0<r<b.

PrROOF:  We use Problem 17.3. Let b € Z, b > 0and let M =
ldeez,a=20,3g,rezZzsa=bg+r,q=0,0<r<b}.

Fora=0,a=bg+r, whereg=r=0andso 0 € M.

Let a € M. Then 3g,r€Z3a=bg+r,q=0,0=<r<b.
Then a+ 1= bg + r+ 1. Since r < b, by Problem 11.3 of Chapter 1
generalized in Problem 13.3 of this chapter, r+ 1< b. If r 4+ | < b,
we have a + 1 € M with r+4 1 as the new r. If r+ 1 = b, then a =+ 1
=b(g+1) and so a+ 1 € M with g+ 1 as the new g, and 0 as the
new r. Therefore, M contains all nonnegative rational integers.

To prove uniqueness, let a = bg, + ry, 0 < r, < b, g, = 0. Then
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bg +r=bg+r blq—q)=r—r nd by Problem 172 |r—r]
< b andsoby Problem 171 g—qu=0=g=q, r=n []

ProsLcm 174 Generalize the thove theorem by permtting
« to be my ritional mteger and & to be 1ny ritwon! nonzero integer
chingine the conclusion shghtly so that the generiliziton will be
correct Prove the generihzation (Hint inductton 1s not necessary )

THEOREM 172« b € 7 both ¢ b not zero have a gre itest
common divisor (le st common multiple) =« b have a positive great
est common divisor denoted by ta &) (positive letst common multiple
denoted by {a b))

ProBLLM 175 Prove Theorem 172 {(Note that this theorem
does nef state that two ntegers have 1gedoranlem)

ProBLEM 17 6 Consider the situition 1n Theorem 17 21f « or
b or both e zero

Throrem 173 a b€ 2Z a>0 5>0 « wnd b not both
zero=Is t € Z Dra+th— (a b)

Proor  Consder /= {.| € Z —av+h wherex € Z}
Fore— 1 yv=0mdfor1=0 v~ | wesecthata € / b € I There
fore I contains at le it one posiuve ratonal integer ind by Theorem
115 of Chapter ! and Theorem 13 3 of this chipter 1t contams 2
smallest posiive ritonml integer d —xu +3v & Then by Theorem
171 dgr€7da—qd+r 0<sr<d Thenr—1 a+(~q) d
=1 a+i—g)(xa+v,b) = {l —qx )a+ (—gr,)b Therefore r € {
But since 0 < r < d and d s the smallest posttive integer m f r=0
Therefore « = gd Therefore dia and stmularly d|b Therefore d1s
a common divisor of « and & Let ¢, be wy common divisorof s and b
then a=Ad b=md where A m € Z Then from d—va+) b
—xhd +3nd,~ (vh+vm)d  we see that d |d Therefore since
d >0 by Defintion 16 7 wnd Theorem 177 o = (¢ &) Takes—x
1—>5, and we have the theorem -

PROBLEM 177  Prove a b€ Z w'+bh #0=dsr€Z3
sa+th— (a b)

PROBLEM 178  Find 5 and 7 of Theorem 17 3 for « = 326 and
b—424

DEFINITION 17 1 a b € Z are relatnely prime < (a b) = |
Also a1s called prime to b and b prime to a & (a b) =1

THEOREM 174 a b ¢ €Z albc (a b)=1 = alc
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ProBLEM 17.9. Prove Theorem 17.4. (Hint: use the result of
Problem 17.7.)

THEOREM 17.5.  p, by, bs, ..., by € Z,plbiby - - - by, paprime
=3i3 plb, | <i<Ah.

Proor: Let M be the set of positive rational integers, &, for
which the theorem holds. Obviously, 1 € M, sinceif A=1,i=1. Let
k € M and let plbb, - - - byby4y. Now either p|b, .y, in which case
i=h+1, or (p,bys) =1=plbibs - - - b, by Theorem 17.4. Then
since A € M, 3i 3 p|b,, 1 <i=< k. Therefore, A +1 € M. There-
fore, the theorem is true for any finite number of factors. -

LEMMA. a,p € Z, p irreducible = (a,p) = 1 or (a,p) = |p|.

Proor: Let p be positive. If (a, p) = A, where | < A < p, then
Alp, which 1s impossible (by Definition 16.5). The case of negative p
is left to the reader. a

THEOREM 17.6. p € Z, pis irreducible < p is prime.

Proor:  First consider the implication =. Let p be irreducible
and let plab, 1.e., ab = kp, where k € Z. By the above lemma, either
(a,p) = |p| = pla, or (a,p) =1 =>p|b, by Theorem 17.4.

Now consider the implication <. Let p be a prime. Suppose p =
ab, where neither a nor b 1s a umit. Then by Problem 17.1, |p| > |a],
|} > |b}. But, since p = ab can be written p - 1 = ab, we have plab

and since p 1s a pnme, either p|a or p|b, which contradicts Prob-
1em 17‘. n

18. UNIQUE FACTORIZATION

We shall now give a general definition which for the present we shall
apply to Z only.

DerFiNiTION 18.1.  Let ¢ € S, a commutative semigroup with
a neutral element and multiplication as the law of composition. Fur-
ther: let a be expressible as « = pyp, * * - pr, Where the PisDay” " ' . Dy
are irreducible in S. This factorization is essentially unique < when-
ever a=p,'p,' - - - p,’, where the p;’,p.’,...,p, are irreducible in
S.then r=1tand 3 a 1-1 mapping ¢ of {1,2,...,n} onto itself D
each Py is an associate of peq’ . This last condition is a rigorous way
of saying that there is an arrangement of the p,’ so that each p, is an
associate of p,’.

Sometimes, for brevity, the adjective “‘essentially” is omitted,
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THFOREM 18 | (Essentially unique factorization theorem for
Z)leta € Z, anot aumt and « # 0 Then @ has an essentally
unique factonzation as a product of primes [Since. 1n Z, primes are
ireducible elements (and conversely) we say primes hese instead of
ireducible elements ]

Proor  First, we prave the existence of such a factorizauan
and then prove it unique Since if @ < 0, then @ = u(—a), where s
a umt, we may suppose that a 1s positive. We shall use Problem 11 12
of Chapter I as generalized by Problem 13 4 of this chapter

Let M={ala € Z. a >0, (a= |, or a has a factorization as a
product of primes}} Then 1 € M

Let v € M /x <« Theneither a1s a prime, and so a € M or
a=cd where ¢ d € Z and nerther ¢ nor o 15 a anrt nor an assoctate
of « Thenby Problem 171 1 < ¢ <a,l <d<a=c,d EM Soa
ts equal to the product of the factonizauons of ¢ and d Therefore,
a € A and so the existence of 1 factornization is established

Now let A be the set of positive mtegers 4 such that for integers
having & prime factors tn « factonization as a product of primes, that
factonzanon 1s essentially unique

Now | € A by Theorem 176 leth € A andlet @ € Z have
the two factonizations « = p,p; PiPaer and @ = q,qs 541 where
the p; and g, are pnime andy = & Now since py,, 1s a prime by Theo
rem 175 py,ylg, for some s 1 <5 <;+1 Without loss of generality
we may assume by renumbening the ¢ s of necessary, that Penldm
Then by applymg the cancellation law, we have p,p, Pr=q:
qu, where wis a unit But now on the left side of this last equation, we
have an element of 7 which has a factorization into a product of k
primes, 50 since A € A this factonzation 1s essentially unique and
so each pilsome q, Therefore A € A =4 + | € A Therefore, fac

torization 1s essentially unique for any fimte number of factors []
CoroLrary 18 1 a € Z a#0 | —1,ahasthe distinct prme
factors pi,py, ., pa=>a=ep,™p P, @ € N, p==1,and

the «; are umque
PROBLEM 18 | Prove the above corollary

PROBLEM 182  Prove a.b € Z (a b)=d,a=ad, b=bd
=(a,b) =1

PROBLEM 183 Prove a b € Z=> [« b}(a,b) = |ab]

19 CONGRUENCES

We now define an extremely important equivalence relatton in Z
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DerINITION 19.1.  Let a,b,m € Z. Then a=b mod m+
m|(a — b). This relation is read “a is congruent to b modulo m.”” The
integer m is called the modulus.

THeEOREM 19.1.  Congruence modulo m is an equivalence rela-
tion compatible with addition and multiplication in Z.

ProBLEM 19.1. Prove Theorem 19.1.

DerINITION 19.2.  The equivalence classes determined by con-
gruence modulo m are called residue classes modulo m. The quotient
set of Z with respect to congruence modulo m is denoted by Z,,, with
addition and multiplication induced by that in Z (cf. Theorem 12.1).

THEOREM 19.2. am€E Z, m#0=dr € Z 3 a=rmodm
and 0 < r < |m].

CoroLLARY 19.1.  Z,, has |m| elements.
ProBLEM 19.2.  Prove Theorem 19.2.
ProBLEM 19.3.  Prove Corollary 19.1.

DEFINITION 19.3. 1y, re, ..., 1 € Z is a complete set of resi-
dues modulo m & r, # 1, mod m for i # j. The set, 0,1,...,m—1
1s called the complete set of least residues modulo m. A set, ry, rs, . . .,
r,, obtained from a complete set of residues by deleting those numbers
which have a factor in common with m, 1s called a reduced set of
residues modulo m.

THEOREM 19.3. The number of elements in one reduced set

of residues modulo m is the same as in every other reduced set of
residues modulo m.

THEOREM 19.4. A set of integers ry, Iy, . . ., I is a reduced set
of residues modulo m &

(D g rforisjij=1,2,...,8

2) (my1)=1,i=1,2,...,s

BaeZ (aam=1=Tida=r.1<i<s.

PROBLEM 19.4.  Prove Theorem 19.3.
PROBLEM 19.5. Prove Theorem 19.4.

. DeriNiTION 19.4.  The number of integers in a reduced set of
re31dlfes modulo m is denoted by ¢(m) and is called the rotient
Junction and also Euler's d-function.

. In Z,,, the cancellation law of addition holds for every element,
ut. for multiplication, the best result is that which is given in the
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second conclusion of the following theorem

THEOREM 195 a by« EZ=(a+c=hb+c mod m=a=
bmod m) and (@ c=b ¢ mod m==a = b mod m, where m, =
mf(e, m})

Proof  The first conclusion 1s obvious For the proof of the
second let d= (c m) Nowac=bc mod m=>TL € Z 3 ac=bc
4 hm where A € Z Let e =c,d By hypothesis m=dm, where
m €7 Then we hwe ac, = bod+ hmd = ac, = be, + kmy =
(a—b)e,=hm, =}k =a—b=hm, where K =Rklcy=a—b
mod m, =

CoRoLLARY 192 ac = bemodm (¢ m)=1=3a=bmodm

PROBLEM 196  Give an cxample showng that the last state
ment of Theorem 19 5 cannot be improved

Lemva o bec€Z (abl=1 a>0 b>0=r a+r,
da+r (b — Da+ r form a complete set of ressdves modulo b

Proor Since there gre b integers in the set we need merely
show that no two are congruent modulo & Suppose na +r= ma+r
mod b withO<np=<b 0<m=<p Thenby Theorem 195 ma — na
mod b and by Corollary 192 n=m mod b and so n=m by the
mequalities satisfied by n and m 1

THEOREM 196 a b € Z (a b) =1 = dla)g(b) = dlab)

ProoF The expression ag+r for r=0 1 a—1 and
q=01 b=t gwves without repetition all nonnegative integers
less than ab Cleatly sg+ rospime v a™ (n 1y =1 Letr, beomwe
of those ¢(a) integers (1e  which ire pnme to &) Then by the above
lemma there are among r, ¢ +r, 2a +r, (b— 1)a +r, exactly
(b) ntegers pnme to b Therefore there are exactly ¢(a)d(h)
nonnegative integers less than ab and prime to both a and b Therefore
Dla)dib) = diab) .

THEOREM 197 p € Z p a pnme n€ N=>d(p?) =p"!
(p—D=p"(1=1p)

THEOREM 198 m &€ Z p, p. px are the distinct prime
factors of m=pp.s po > 0= d(m) —po gt g
(=D~ 1) (= D=mll=Up)(d—lp)  (1—lpd)

ProsLEM 197  Prove Theorem 19 7

PropLEM 198 Prove Theorem 19 §
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ProBLEM 19.9. Prove: q is the product of the distinct prime
factors common to m, and n, = ¢ (mym,) = q(P(my)p(my)/d{(q)) .

THEOREM 19.9. (Fermat-Euler) a,m € Z, (a,m) =1, m>0
= ¢*" = | mod m.

Proor: Let ay, as, ... ,deum be a reduced set of residues
modulo m. Then the set of integers aay, aa,, . . . , Adsuy 1S also a re-
duced set. For, if aa, = aa, mod m, then by Corollary 19.2, a, = a,
mod m, which contradicts the hypotheses made about the a,. There-

fore, a, = aa, mod m, fori=1,2,..., ¢ (m) and suitably chosen n,,
by Theorem 19.4. Now by multiplying these congruences together, we
get ayas -+ ¢ ¢ Agom = a®Maya, Ao mod m, and so by the same
corollary, a®*" = 1 mod m. n

CoroLLARY 19.3. (Fermat’s Theorem) a,p € Z, p >0, p a
prime,pfa =>a*' = 1 mod p.

COROLLARY 19.4. a,p € Z, p > 0, paprime=a” = amod p.
DEFINITION 19.5. a € Z, ais even < 2|a; a is odd &> 2/ a.
ProBLEM 19.10. Prove Corollary 19.3 directly.

. ProOBLEM 19.11.  Give three examples in which the cancella-
tion law of multiplication does not hold in Z,,, for some m € Z.

PrOBLEM 19.12. Prove: the nonzero elements of Z,, and

the multiphication induced in Z,, by that in Z form a group <> m is a
prime.

PrROBLEM 19.13.  Prove that the reduced residue classes of Z,,
and multiplication form a group.

_ P}?OBLEM 19.14.  Show that Z, and addition is a group which
1S not |§omorphic to the reduced residue classes of Zg and multiplica-
tion. Find groups previously studied which are isomorphic to each.

ProBLEM 19.15. Show that Zg and addition is isomorphic to
the reduced residue classes of Z; and multiplication.

PROBLEM 19.16.  Find all isomorphisms of the groups of Prob-
lem 19.15.

PROBLEM 19.17.  Show that the even integers of Z and addition
form a group isomorphic to the additive group of Z.

ProBLEM 19.18.  Find an explicit formula giving one or more
intege1s » 3 ax = h mod m and state when it is valid.



Chapter 3: Groups

This chapter ts devoted to the study of groups Most of 1t concerns the
application to groups of a large number of the fundamental concepts
discussed tn the first two chapters We consider subsystems (called
subgroups) niming the vanous types, and we combine one type with
equivalence relations 1o obtatn the concept of a quottent group We
ntroduce free groups as another way of obtaining groups with a few
generators and a few generating relations

A discussion of abehan groups of finite order 1s included for two
reasons The subject 1s of considerable importance for other matters
and also 1t provides a neat example of 2 mathematical problem com
pletely solved

Two Sylow ‘theorems are established and a few applications of
them are given 1o illustrate briefly the problems involved in the study
of groups of fimte order

Permutation groups are considered for their own importance
and for their use in Chapter 6 in considering the Galon Theory of
Equitions

Automorphisms and endomorphisms of some groups of smalt
fimite order are considered to ilustrate part of the general theory and
to lead to the consideration of rings tn Chapter 4

Finally composition series are considered and the fundamental
theorem about them for fimte groups 15 proved to have 1t available
for Chapter 6

! GENERAL PROPERTIES OF SUBGROUPS

We have previously given in Defimttions 4 2 and 6 2 of Chapter 2 the

of oups and We now constder varous
of thetr properties and distinguish between some different hinds of
subgroups

DEFINITION | | If G 1s a group the two subgroups of G
consisting respecnvety of G uself and of the neutraf efement alone
are called vnprog ips  All other subgroups of G are called

proper subgroups
46
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THEOREM 1.1.  Let (G, [1) be a group and H a set of elements
of G. Then,

(1) H and [0 form a subsemigroup of G < condition (1) of Defini-
tion 6.1b of Chapter 2 holds:

(2) H and [J form a subgroup of G < conditions (1), (3), and (4)
of Definition 6.1b of Chapter 2 hold:

(3) if G is finite, H and {J form a subgroup of G < condition (1)
of Definition 6.1b of Chapter 2 holds.

Proor: The first two statements follow from the condition
that O is associative in G and so in H; the third follows from Theorem
6.1 of Chapter 2.

ProBrLEM 1.1. Find all subgroups of S; (cf. Problem 4.2 of
Chapter 2).

ProsLEM 1.2.  Find all subgroups of the additive group of Z.

ProBiLeEM 1.3.  Find all the subgroups of (Z,, +); (Zs, +);
<ZZD +>'

ProBLEM 1.4.  Find all subgroups of the reduced residue classes
of Zyand -, Zgand -, Z5 and -.

ProBLEM 1.5. Prove that if H is a finite subset of a group
(G,0), and if H 1s closed with respect to [J, then (H, ) is a
subgroup of (G, ().

THEOREM 1.2. If H and K are subgroups (subsemigroups with
H N K # @) of a group (semigroup) G, then H N K is a subgroup
(subsemigioup) of G.

The remark at the end of Section 4 of Chapter 2 about omitting

mention of the law of composition of a group is followed in stating
the above theorem.

PROBLEM 1.6.  Prove Theorem 1.2.

PROBLEM 1.7.  Give an example to show that a theorem about
H U K, similar to Theorem 1.2, does not, in general, hold.

PROBLEM 1.8.  Generalize Theorem 1.2 to any collection of
subgroups of a group. Prove your generalization.

Due to the situation that the union of subgroups is not necessarily
A subgroup we must resoit to a different method of finding a subgroup
Containing two given subgroups. Some aspects of the method are
useful generally, so we give a very general definition.
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DerniTion 12 Gtven a set S and a property P (which may
have several conditions 1o be fulfitled) The smalless subset of § pos
sessing the property P1s that subset T of $, if one exists, which satisfies

(1) T has the property P

() YU € § 3 Uhastheproperty P, T C U

Thus for example we may speak of the smallest subgroup of
a group G te, the smallest subset of G which has the property of
being a group {with the same 1w of compositon as G, of course)
Here, the subset clearly exists 1t 1s the subgroup conststing of the
neutral element alone Howenver we could also ask to find the smallest
subgroup of G which contarns all the elements of a particular subset
H of G We can obtan the smallest subsemigroup with this property
as follows Consider all products (10 use multiplicatien as the law of
composition) of a finite number of elements of # 1%, A, Taking two
such I, 4 and M, A, and multiplying them we get I &y,
which 1s also a product of a finite number of elements of H That the
associative law holds for such products follows from Theorem 3 1
of Chapter 2 Thus we have a subsemugroup which contains H (since
of course # or m or both can be 1) Furthermore any subsemigroup
which contains all the elements of £/ must contatn this subsemigroup
Therefore Defimtion 1 2 1t s the smatlest subsermgroup of G which
contains # Thus we have proved

TheortM 13 The smallest subsemsgroup of a semigroup §
containing a nonempty subset £/ of §1s the set of all composites of a
fimte nenzero number of elements of H

It should be noted that if § has a neutral element then the con
ditions that ¥ be nonempty and nonzero may be dropped This i1s a
simple consequence of Defimtion 15 | of Chapter 2 The next three
theorems can be proved after the manner of Theorem 13

THeorCM | 4 The smallest subsemigroup of a semigroup §
contaning a norempty subset # of S 15 the common part of all sub
semigroups of G contarng &

THEOREM |5 The smallest subgroup of a group G contaming
4 subset H of G, 1s the set of all composites of a finite number of
elements of H and mverses of elements of #

THEOREM 1 6 The smallest subgroup of a grovp G contaming
a subsel # of G 1s the common part of all subgroups of G contaning H

PROBLEM 15 Prove Theorems 14, 1 5, and 1 6
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The above four theorems are fairly simple consequences of the
definitions of subsemigroup and subgroup. The next theorem is less
obvious and is a result which we shall often find very useful.

THeoREM 1.7.  Let H be a nonempty subset of a group (G, ().
Then H and the restriction of (] to H form a subgroup of G & ¢ [J b™!
€ H whenever a,b € H& b ' [Ja € H whenever a,b € H.

Proor:  We shall prove the first necessary and sufficient con-
dition and leave the other to the reader.

The implication “=" is obvious.

Consider the implication “<"". Suppose a [0 b~! € H whenever
a,b € H. Then in particular, a 0 a~! = e € H, where e is the neutral
element of G,ande Ja '=a"! € H, Y a € H. Thus conditions (3)
and (4) of Definition 6.1b of Chapter 2 are satisfied. We have just
established that b € H = b~ € H. Therefore, Va,b € H, a O b
=alJ (b™')"' € H and so condition (1) of that same definition is satis-
fied. Therefore, by Theorem 1.1, part (2), H is a subgroup of G. -

2. CYCLIC GROUPS AND SUBGROUPS

This section will be devoted primarily to a particularly elementary
type of group, but first we make a definition which introduces a more
general concept.

DeFiNITION 2.1, (a) The subsemigroup (subgroup) whose
existence is established by Theorem 1.3 (Theorem 1.5) is called the
subsemigroup (subgroup) generated by the set H.

(b) A set of elements H is a set of generators of the subsemigroup
(subgroup), K, of a semigroup S (group G) < K is the subsemigroup
of § (subgroup of G) generated by the set H.

(c) A subgroup K of a group G is a cyclic subgroup of G & K is
generated by a set H consisting of a single element, which is then

called a generator of the cyclic subgroup. In this case, if K= G, we
say that G is a cyclic group.

Of course, in all thiee parts of the above definition, the whole
group or semigroup may be the subgroup or subsemigroup.

PROBLEM 2.1.  Prove directly, by using Theorem 15.1 of
Chapter 2, that the set of all powers (cf. Definitions 5.5 aad 3.3 of
Chapter 2) of a single element « € G, a group, form a subgroup of G.

PrOBLEM 2.2, Give five cyclic groups considered so far.
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PROBLEM 23 Prove thit (¢ ) "= in a semigroup with a
neutral element Do 1t without using Theorem 15 | of Chapter 2

ProsLEM 24 Prove that
- (abul) - (ubal) a= (ulﬂ‘d) - (ubrd)
= Nabed) T \beda edab) Y™ \dabe
form 1 cyclic group Show thit a and ¥ are generators but that ¢ and
B are not

PROBLEM 25 Prove that
- (ubu}) 5= (ubrd) = (abu)) - (ubcd)
= \abed! ° T \bade cdab) "7 \deba
form = group which 1s not cyclic

Prosicm 26  Give il the elements of the cychc group

abede

generated by A — (h( dea

) Which ire generators®
ProBIEM 2 7 Prove every subgroup of a cychc group 1s
cyvhe

DeFiniTION 22 The order of the cychc subgroup generted
by i element @ € G 1 group 1s called the pcriod of a (1t s fre
quently also called the order of «)

ady  n e

ProBLEM 28  Prove that a = ( ) 15 of penod n

ity a,
Thus prove that there exists a cychc group of order # for each positive
integer

PROBLEM 29 Prove that two cyclic groups of the same order
are 1somorphuc

THEOREM 2§ if the finne cyche subgroup H of the group G
generated by the element ¢ 1s of order n then H consists of the
elements « «* a"=¢ where e 15 the neutral element of G

PROOF  Since H 1s fimte the elements ¢ + € N cannot alf
be different Let a* = o where for definiteness we mny suppose that
A<h Thene=a"* where h—4 >0

Then we know that the set L~ {x]v € N a* = ¢} 15 nonempty
and so there exists a smtlest element 1n 1t say m Then a"=¢ For
O<s<t<mas#a smceif —a thena —emd 0<r—s
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< m, and this is impossible since m was the smallest element of L.
Thus a, a*, a3, . ..,a™"!, e are all distinct.

Every element of H is one of these m elements, since ¥V w € Z,
by Theorem 17.1 of Chapter 2, 3q,r € Z 3 w=mq +1, with
0<r<manda® =a"" = gMg = (a")%" = e¢%d’ = ea’ = a'. There-
fore, m=n. =

THEOREM 2.2. If G is a cyclic group of finite order n, gener-
ated by «a, then the number of distinct generators of G is ¢{n), and
the generators are the elements a*, where A € Z and (A, n) = 1.

Proor;: Let A € Z and let (h,n) =1. To show that g* is a
generator of G, it suffices to show that (¢")", h=1,2,...,n, are
distinct, since there are only n elements in G.

First, we shall show that (a*)" # e for 0 < h < n. For, suppose
that (a*)" = ¢ for some /1,,0 < i, < n. Then dq,r € Z 2 kh, = ng
+,0<r<n [r>0 since (n,hk)=1]. Then e= (a")r=q'n
=a"a' = ¢", which 1s impossible since then there would be fewer
than n elements 1in G.

Now if (a*)* = (a*)!, where 0 < s < t < n, then (a*)"~* = ¢, with
0 <r—s < n, which is impossible by what we have just proved.
Therefore, the (a*)", h=1,2,...,n, are all distinct and so a* gen-
erates G.

if ([\, ") =d> 1’ then (al.)nld — (al\)nl(lx.n) — akn/(l-,n) — (aII)AI(A.l!)
= ¢, and so, 1n this case, a* cannot be a generator.

Forany A€ Z 3 (k,n)=1 dhky=4k mod n, 0 < ky < n and
a* = a*. Therefore, the number of distinct generators is the number
of positive integers less than n and prime to n. Therefore, there are
exactly ¢(n) generators. IIPAN L/‘/ 2S¢ 4 =

PROBLEM 2.10.  Prove that the period of an element ¢ € G,

a group, is the smallest positive integer n 3 a" = e, if there exists
such an ».

.PROBLE]W 2.11.  Prove that if 11 is the period of a« € G, a group,
and if ¢’ = ¢, then nlA.

PROBLEM 2.12.  Prove that if the group G is isomorphic to the
group G, and if in that isomorphism ¢ € G is mappedontoa’ € G,
then ¢ and o’ have the same period.

: PROBLEM 2.13. Investigate the situation of Problem 2.12 in
the case where G s merely homomorphic to G'.

PrOBLEM 2.14.  Prove that if a,b € G, a group, and ba = ab
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then the period of ab divides the f¢ m of the puriods of « and b

PropLEm 215 Given a € G 1 group «a 1s of period n nd
L€ 7* prove (A n)=d=>a" 15 of penod n/(k n)

3 EQUIVAI ENCE REI ATIONS IN A GROUP

The number of equivalence relitions wiuch can be defined 1n a group
(s rather large since any partition of the set of elements of the group
dehnes n equialence rel mon by Theorem 8 2 of Chapter 2 How
ever the most interesting and useful equivalence relations in any
algebruc system are those which are compatible at least on one side
with the law or laws of composition of the system [t 1s of considerable
importance that we ¢1n charictertze such equivilence relations com
pletely for 1 proup We do so in the next two theorems

THEOREM 31 If # 15 1 subgroup of 1 group (G () then
Ry [0y P € H (v [y € H) 1s  equnalence relation com
patible on the right (feft) with {J

Proot First we note that since G s a group Yx 1 EG
etther ¥Ry or vRyv so R 1s defined for every pur of elements of G

Next we prove that R 1s an equivilence relation

It1s reflexive For since Hisagroup « € HandsoxJx '€ H
= Rx

Itis symmetnic For since # 15 1group of x(y ' & H (te if
XRy) thenitstnverse (vOr ) '—v O« € H 1e HRy

Itas ransive For since Hasagroup 1f vy ' € Handy Oz !
€ Hle xRy indyR ) thentheircomposite (v [y H O 0z Y
—xDO. '€ #H Thuis xR Therefore R 1s an equivalence refanon

Now we prove the right compatibility If € G wndxOy '€ H
(te xRy then (M1 100G 0O '=(¢0.30( 'y H=x0
3'EH and so vRv = (xTJORNVDO.) 7/ € G We leave the
left cises to the reder as an exercise L]

Itshould be noted thwt iRe <= hh € H

ProsiEm 31 Carry through the detarls of the proof of Theo
rem 3 | for the cise in parentheses

Now we prove th 1t the rel wons discussed in Theorem 3 1 are the
only ones compatible on the right or feft with the law of composition
of the group

THEOREM 32 If the relation R 15 an equivalence refation de
fined 1 a group (G [J) compatble on the nght (left) with 17 then
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(1} the elements ¢« € G 3 aRe form a subgroup H of G,
(2) Rcanbe defined by xRye=>a 0Oy € H (W' 0Oy € H).

ProoF: (1) Let aRe, bRe. By symmetry of R, eRb, and by
transitivity, aRb. Then by right compatibility, a (0 b™'Re, and so by
Theorem 1.7, H is a subgroup of G.

(2) The relation =. If ARy, then by right compatibility, we have
vy 'Reandsora Oy!' € H.

The relation <. If A [0 y~! € H, then by definition of H. 1 O y™!
Re and by right compatibility, ARy.

PrROBLEM 3.2.  Carry through the details of the proof of Theo-
rem 3.2 for the case in parentheses.

We now introduce a law of composition (in the set of all subsets
of a set) which we shall use at present for subsets of a group, but we
shall give a definition valid more generally.

DerINITION 3.1.  Let S be a set with a law of internal composi-
tion, [, and let H, K be subsets of S. Then H {1 K 1s the set of all
elements 1 O A where h € H and k € K.

We shall use the above defimition 1n the next theorem. We need
one more definition. It happens that in a group, equivalence classes
can be represented n a very simple and convenient form. We intro-
duce terminology for that now.

DeriniTION 3.2, If (H, [J) is a subgroup of a group, (G, O0),
and if R 1s one of the equivalence relations of Theorem 3.1, then the
equivalence classes determined by R are called 1ight or left cosets of
G with 1espect to H {(sometimes briefly, cosets of H if the meaning
15 clear from the context) according as R 1s xRy<=x[Jy' € H or
Wy&a'0y € H. The number of right cosets is called the index
ofH in G and is denoted by (G:H).

THEOREM 3.3, If H is any subgroup of a group, (G, [0}, then
the night (left) cosets of G with respect to H are the sets H [0
(vOH). where we have written /& [J 1 as an abbreviation for H (O
la}, where 1 € G (y € G), and those cosets different from H can
be witten H [ (vOH), wherex € H (y &€ H).

. PROOF:  Lety € 4, arght coset. Thenifz € A, x D z™' € H,
bexUz'=h € H or\=h [z Therefore, A C H O x.
thuq(\)n—ﬂ;i otherhand,ifz € H [0 a,thenz=/'[0a, where i’ € H:
L Oz whete h"=h'-' € H.sox O z'=h" € H. There-
. A C A. Therefore, H O\ = 4. L
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ProsLEm 33 Show thatm 7 « = b mod m 1s an equivalence
reltion of the type of Theorem 3 |

Prostem 34 In S, let A, ={¢ « A} Find ek, 8y €K,
A Age

Proprenm 35S In Sy let A, —{t y} Find all nght and left
cosets of S with respect to Ay

ProBLEM 36  In Oy, the cyclic group of order 12 generated
by o et H={1 &’ a* a®} wheve a® =1 the neutral clement find
al &l a'H

ProBLEM 37 In Cyy of Problem 36 find {(afl){aH) (al)
(@*H) H{all) wd tal)(a'H)

ProBLEM 38 Prove if # 15 2 subset of the fimte group
{G 1) then #f O # ~ H = H 1~ asubgroup of G that for any group
the implication <= holds

PROBLEM 3 9 Prove (HMOIA)QL=HDO(ADOL) for any
subsets # A L of 4 semigroup

ProsLem 3 10 Prove i #H = H 1f H 15 1 subgroup of 1
group G and h € H

ProsLem 3t Prove a b€ (G () vgroup (H O sa
subgroupof{G O) b€ «OH=uH-bTOH

ProsLEM 312 In (Z +) find the cosets with respect to the
subgroups consisting of all integers which are multiples of 5 of m

THEOREM 3 4 1 B are any two cosets of 2 group G with re
spect to 4 subgraup H of G =>4 4 | | mipping of A onto B

COROLLARY 3 | The number of elements 1n any two cosets of
a group G with respect 1o a subgroup 1 1s the same

CoroLtary 37 The number of left cosets of G with respect
to f1 15 equal to the number of nght cosets of G with respect to #
ProBLEM 313 Prove Theorem 3 4 and 1ts corollaries

Tueorenm 35 (Lagrange) 1 H 1s a subgroup of a finite group
G then the order of H divides the order of G

PrROOF  Let /i be the order of H 4 the order of G and 4 the
number of cosets of G with respect to # By Theorem 8 1 of Chapter
2 every element of G 15 in one and only one coset By Coroltary 3 1
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to Theorem 3.4, each coset has i elements in it. Therefore, the number
of elements in G is hk. That is, g = hk and so h|g. m

COROLLARY 3.3. If H is a subgroup of a finite group G, then
the order of G is the product of the order of / and the index of Hin G.

PrOBLEM 3.14. Prove: G, a group, has order p, a positive
prime = G has no proper subgroup.

PrOBLEM 3.15. Prove: Aln =>3 a subgroup of order A in the
cyclic group of order a.

PrROBLEM 3.16.  Prove: all groups of order p, a positive prime,
are isomorphic.

ProBLEM 3.17. Find the indices of the subgroups in Problems
3.4, 3.5, and 3.6.

ProBiEM 3.18. Prove: H,K are subgroups of a group G,
K C H, (G:K) is finite = (H:K) is finite and (G:K) = (G:H)
(H:K).

ProBLEM 3.19. Prove: H,K are subgroups of a group G,
K C H, (G.H) and (H:K) are finite == (G : K) is finite and (G : K)
=(G:H)(H:K).

Using the result of Problem 3.5, we see that S, can be represented
as the union of right cosets as S5 = {¢, v} U {a, €} U {B, 8}, while
as the union of left cosets we have S5= {¢, y} U {a, 8§} U {B, €}. If
we use the subgroup K, of Problem 3.4, the two corresponding repre-
sentations are the same. [t is important to distinguish between such
subgroups. The distinction is given by the problem of determining
when the equivalence relation determined by a subgroup is compatible
(on both sides) with the law of composition of the group. The next
two theorems give the complete determination.

THEOREM 3.6.  If an equivalence relation R defined in a group
(G. ) is compatible with (J, then the subgroup, H = {h|h € G, hRe}
has the property that Vh € H,Vy € G,y 'O h0y € H.

.PROOF: Since R is an equivalence relation, compatibility is
cquivalent to simultaneous right and left compatibility. Let i € H and
YE G.Leta=hOy. Then x Oy =/ and so by the definition of
H.x0Ox'Re, and so by right compatibility, xRy. Now by left com-
patibility, eRa-'Oy, so \v'[Ov € H, ie., y'Oa= h, € H. or

v=yDOh,. Finally, yO hy,=h [0 y=h=y10h10y. -
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TueoreM 37 If (M [3) 15 a subgroup of (G (O} a group
andif H histhe property theVh € H Yy € Gy 'OhOvEH
then the equivalence relatton of Theorem 3 1 defined by H 1s com
patble with (3

PRooF  We shall prove thst the two relations of Theorem 3 1
are equivalent let x[J) '—h € #/ Thenv=h[Jy Smce H1sa
group and & € H/ h € {I ind by hypothesis 3 'Oty -y
€H Then v'Ov=(hOy) *Ov—s 'O 'Ty=~h, There
fore vOyvtE H=>v'0y €H Smivly vy € H=>x0
y EH

Thus wince whenever either relation holds the other one does and
one 1s comptible on the rnght the other on the left the single relation
s comp tible ]

DroNmion 33 fn oy group (G 0 a subgroup H 15 cafled
wvanant (normal o sodf Omgugatd) s FheE H VA EG )
Oy € H

PROBIFM Y20 Prove (f H# 1s 1 subgroup of 1 group {G T
then s manmtesy OHOY—H VyEGeVOH-H
Oy ¥y €6

PropLEM 3 71 Prove that for i tnv rant subgroup left cosets
dre nght cosets

PrOBiEM 3 77 Find ten invanant subgroups of groups con
stdered previously

ProBiEN 373 Find three subgroups of the groups considered
previously which e not 1nv i nt

ProBLEM 374 Prove that 1 subgroup of index 2 15 mvanant

Since we now have an equivilence relition defined in 2 group
{G DO and compatible with [ 1t 1s ntural to consider the quotient
set A of G with respect to that relation ind the Fw of composition
wduced by (in A By Theorem 7 1 wd Theorem 12 2 of Chapter ?
A 15 1 semigroup By Theorem 3 3 and the last part of Problem 3 20
and Problem 39 wehave H Q(a O H) — (HQa) O H — (« O H)
OH=a«¢OHOH) ~aQHad similwly («OHOHF—aOH
{We have used O for the induced law but by Theorem 3 3 there 1s no
dnnger of confusion } Thus £1 15 ¢ neutral element for A Finnlly by
simifar rewsonmng (o ') O (@OH) —H—~(«DBH) O« OH)
50 every element of A his aninverse in A Therefore A 15 a group and
we have proved
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TueoreM 3.8.  Let (G, [J) be a group and H an invariant sub-
group of G. Let R be the equivalence relation of Theorem 3.1. Then
the quotient set G/R and the law of composition induced by [Jin G/R
is a group, called the quotient group of G with respect to H and is
denoted by G/H. (This is sometimes called a factor group.)

ProBLEM 3.25. Find the quotient groups of C,, (cf. Problem
3.6) with respect to two of its proper subgroups.

ProBLEM 3.26. Find the quotient group of S3 with respect to
its proper invariant subgroup (cf. discussion preceding Theorem 3.6).

DEFINITION 3.4. A group is abelian (or commutativey < its
law of composition is commutative.

ProBLEM 3.27. Find six abelian groups so far considered.

ProsLEM 3.28. Prove that any quotient group of an abelian
group is abelian.

ProBLEM 3.29. Prove that any quotient group of a cyclic
group is cyclic.

4. HOMOMORPHISMS AND ISOMORPHISMS OF GROUPS

Homomorphic mappings of algebraic systems in general are of the
utmost importance in most of the study of algebra. The most basic
result for groups is the next theorem.

THEOREM 4.1.  Let « be a homomorphic mapping of a group
(G, O) into a set E which possesses a law of internal composition O.
Then

(1) the set of images, K = Ga, and O form a group,

(2) the set H={x]n € G, xa=¢'} and [J, where ¢' is the neu-
tral element of K, is an invariant subgroup of G, called the kernel of «.

(3) G/H is isomorphic to K.

Proor: (1) Let A, h, € K. Then dg,, 2. € G D g =k,
g:a = k. Now. since G is closed underJ, 3 g, € G D gy =g, [ g,
and s0 Ay € K 3 gya=4A;. Then Ay= gya = (g, O g)e= (g,a)
O (g:@) =k, O k,. Therefore, K is closed under O.

Let Ay Ay, A; € K. Then Jg,.8..2: € G D gia =k, ot = ks,
& =hy. Ay O (h, QO k) = (g12) O [(ga) O (g2} ] = (g12) O [(g:
Uedal=[g O (e. Ogn)la=[(g Og) Ogsla=[(g Ogs)a] O
(€20) = [(g10) O (£20)] O (gaa) = (h; O ka) O A;. Therefore, the
law of composition O is associative in K.



58 Croups

Since G 15 a group G his a neutral element ¢ Let e = e and
It AEA Then 12 € G 3 ga—k Then e Oi=(ea) O (ga)
=teD gla=ga—~h Simiuly AOe =4 Therefore e s aneutral
element for K

lethE A ndletg € G 3 ga=4 Then 1y ' € G and 34
EADA=¢'a ThenhOh =(a)O (s a)=(g0g Na=ea
—e¢ Simiarty A OA=e Therefore 4 1s the inverse of & and so
K 1s 1 group

Y Llet { £, EG be Dgyx—¢ ga—e¢ Then ¢ —ea—
(6:08 Ja—(ga) Olg, e)=g, a Therefore (g, 0g: Na—
¢ Therefore by Theorem | 7 I 1s a subgroup of G Let h € H
and g € G Then (g O/ T4} — (g a) O (he) O (sa) = (1 'a)
O Oa)y— (s o) Of{gey=(g Ogla=ea=¢ Therefore
e =g OhQOg€ H /g € G Therefore by Defimtion 33
H s an mvapant subgroup of G

(3) The quottent croup G/ cons sts of cosets of G with respect
to H We must show first that there exssts 1 1 | mapping of these
cosets onto A The mipping & will g ve us the desired mapping Let
A be wmy coset and let ¢, « €4 Then 1—¢ OH—HUOaby
Theorem 3 3 and Definition 33 <o a —a D hy a,—a DO hy where
h hy € H Then ¢ a = ta O e — (aa) O (ha) — {aa) O ¢ —aa
and simtlarly @, — e Therefore under a 1l elements of A are
mipped onto the sime element of A so without danger of confu
sion we may write Ae — qa though thus 1s an extension of the mean
wng of the mapping « We then have a mapping of G/H into A It
isonto since f A €A 33 € G 3 ga=4 and so (s OH)a—1k
It1s 11 smee f da—Ba lettng « € 4 b € B then we hive
ax—ba=g a=b a=(a(db )a— {aa) O (b a)~ (aa) O
ta @)= (alaNa~ea~¢ =alb EH=(a bEAanda b
€ B)=A4-8

Lastly letting a & € two cosets 4 B respectively and lettng
C be the coset containing ¢ —a (14 we have (4 O B)a— Ca—ca
— (a0 b)a — (ae) O (ba) — Aa O Ba which establishes the homo
morphism "

PROBLEM 4 | The following mapping « 1s an endomorphism
(cf Definttion 11 | of Chapter 2) of the cycl ¢ group C , of order 12
generated by a a™ a—(a%) fory—173 4and VA € Z* Find
C s and the kernel H of & Discuss C of/H

ProBLEM 42 Find 2 homomorphism of S, onto the cyclc
group of order 2 Find the kerne)
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ProBLEM 4.3.  Find all other possible homomorphisms of S.
(Hint: for each homomorphism, there must be an invariant subgroup.)

THEOREM 4.2.  H is an invariant subgroup of the group (G, [J)
= the mapping, a, defined by xa=x H, ¥V x € xJ H (1e., each
element is mapped onto the coset to which it belongs), is a homomor-
phism of G onto G{H. This homomarphism is called the canonical
(also natural) homomorphism of G onto G/H.

ProBLEM 4.4. Prove Theorem 4.2. (Hint: use the proof of the
preceding theorem.)

PrROBLEM 4.5.  Write out in full detail the canonical homomor-
phism of C;, of Problem 4.1 onto C,o/H, where H = {1, a*, a®}, where
1 is the neutral element.

ProBLEM 4.6. For H and C,, as in Problem 4.5, give another
homomorphism of C,, onto C/H.

THEOREM 4.3. a € G, a group = the mapping ga=a 'O g
Oa, Vg € G, is an automorphism of G.

Proor: This mapping is 1-1 since if a ' O ga=a'0g’
Oa, then g0 a=g' Oa and g=g’, applying the right and left
cancellation laws. This mapping is onto since if h € G, a1 O a™!
=geGandg'Og0a=h. Lastly, (g0 Ma=a'0(g0Oh) O
a=(a'0Og0a) O (@'0OhOa) =gaha. Therefore, « is an

automorphism of G. n

DEFINITION 4.1.  An automorphism of a group G, which can
be determined by a single element of G, as in Theorem 4.3, is called

an inner automorphism. All other automorphisms of G are called
outer automorphisms.

ProBLEM 4.7.  Prove: H, a subgroup of G, is an invariant sub-

group of G < H is mapped onto itself by every inner automorphism
of G.

PROBLEM 4.8.  Prove: an abelian group has exactly one inner
automorphism.

ProBLEM 4.9.  Find all the inner automorphisms of S;. Show
that they form a group.

ProBLEM 4.10.  Find the set of all automorphisms of C,, and
show that they form a group.
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ProsLem 4 11 Prove a cyclc group of order # has exactly
@{n) wromorphisms

PrOBIFM 4 17 Find all outer wtomorphisms of Sy if any

ProslEM 4 13 The dditive group of Z has a subgroup #;
consisting of afl multiples of three Find Z/H;

PronLEM 4 14 Find all subgroups of Z and the quotient
groups of Z w th respect to each of them

PrROBLIM 4 15 Prove G =5 x T where S and T are groups=

(1) G his two mvarnint subgroups one of which 1s 1somorphic
to § and the other one 1s 1somorphic 1o T

() Gis sisomorphicto? G/TtoS

PROBLEM 4 16 For 1 group G of fimte order & nd ivanant
subgroup #/ of order #t prove that the order of G/# s (fh

THEOREM 4 4 fet # be in mvinant subgroup of a group
(G [J) nd let « be the canonte ] homomorphism of G onto G/H
=C Then

(1) for ewch subgroup A of G the set of ill elements ¥ € G
B va € KA 1 1subgroup of G which contuns H

() the mpping of conclusion (1) s 1+ 1 1 mipping of the set of
subgroups of G onto the set of subgroups of G contuning #

{3 1f A 15 an invinant subgroup of G the correspondtng sub
group A of G tv m invarint subgroup of G and G /A ts 1somorphic
to Gih

(4) for ay subgroup L of G L/{# M Ly 1s ssomorphicto (H O L)/
L

ProorF  We shall teave the proof of statements (1) and (?) to
the reader as an exercise ind we shall now prove (3} and (4)

(3) Let B8 be the canonicil homomorph sm of G onto G /A
Then B 1s a homomorphtsm of G onto G /A The kernel of o 1s the
set of elements of G mapped nto A under o This set of elements by
conclusion (1) 1s denoted by A and so by Theorem 4 1 (2) 1t1s an
wvariaat subgroup of G Therefore by Theorem 4 1 (3) GlH s
1somorphic to G fA

(4) Since H 1s snvanant 1n G H £] L 1s a subgroup of G and #
1s an invariant subgroup of } T L Every coset of H# [1 L with respect
to H has elements in L Therefore in the canonical homomorph sm
of H (1 Lonte (H O L)/L the subgroup L1s mapped onte (H# O LY/L
Therefore by Theorem 4 1 (4 (3 L)jL1s somorphic to the quot ent
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group of L with respect to the invariant subgroup consisting of all
elements of L which are mapped onto the neutral element. These are
precisely the elements of # N L. Therefore, (H [1L)/Lis isomorphic
to L/(H N L). =

PrOBLEM 4.17.  Complete the proof of Theorem 4.4 by proving
statements (1) and (2).

We now consider two subgroups of the group of Theorem 7.1 of
Chapter 2.

THEOREM 4.5.  The set of all automorphisms of a group (G, [J)
is a subgroup of the group of all 1-1 mappings of the set G onto itself.

Proor: Let «, 8 be automorphisms of G. We shall show first
that 87! is an automorphism of G, where 87! is the inverse of 8 as a
1-1 mapping of G onto itself. Let a,» € G. Then (¢« O h)B' € G
and [(«Ob)B)B=a D b. Also, [(ap™) O (b HIB=(aB™)B
OhpHYB=alb, since B is an automorphism. Thus we have
[(@a@Ob)B']B=[(aB™") O (bB~')]B. Hence, since B is a 1-1 map-
ping, (¢« O b)B~'= (aB™*) O (bB~'). Therefore, B! is an automor-
phism of G. Hence, by Theorem 7.1 of Chapter 2, af™* is a 1-1
mapping of G onto itself.

Then finally, (¢ O b)(«B™") = [(aa) O (ba)]B~' = (¢a)B~' (O

(ha)B™' = a(ef™) O b(aB™'). Therefore, oB~! is an automorphism
of G.

Hence, by Theorem 1.7, the set of automorphisms of G is a
gioup. n

THEOREM 4.6.  The set of all inner automorphisms of a group
G is an invariant subgroup of the group of all automorphisms of G.

ProsLEM 4.18.  Prove Theorem 4.6.

DeriniTiON 4.2.  Let (G, [J) be a group. The set of all elements

¢ €0 3Vare G,cda=2a0cis called the central of G. (Some-
times the center.)

PrROBLEM 4.19.  Prove: the central of a group G is an invariant
subgioup of G.

PROBLEM 4.20.  Find the central of S, and of an abelian group.

_ THEOREM 4.7.  C is the central of a group G = the group of
mner automorphisms of G is isomorphic to G/C.

41)PR0BLEM 4.21. Prove Theorem 4.7. (Hint: apply theorem
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ProBtiM 422 Apply Theorem 47 to find all mnner auto
morptusms of S,

5 TWO FAMILIFS OF GROUPS

So £ we hive considered only one fimte non abelian group §; We
are going to consider next some properties of groups which are of
ymportance only for non sbeliin groups So 1n order to have 1 vader
vanety of examples fllustriting the general theory we interrupt the
development of the theory to consider briefly two families of groups
which are 10 general non belian We shall subsequently discuss how
to anilyze groups i general 1n the form m which we now give these
groups Let it be assumed 1t present thit there is nothing contradictory
Wbout the mven relstions In both cases the groups are defined in terms
of two generiting elements which sawisfy the given relations and no
others except those relwions which re implied by the gven ores

Dihedral group of order 2n Dy, The two generating elements
we ¢ ind b and they satisfy 2 = | b =1 abak — 1 (where 115 the
neutrt element) This 1rst relation may be wnitten as ab=56 a A
typical case 1s that of 1 =4 Here 1t1s €15y to show by using the lust
defining relation that every product of a s wnd b s can be wnttert 1n
one of the eight forms 1 & b* b a ab ab* ab’ (For example
ba can be obtamed as follows from ab — b'a (b * = b here) we have
bab  b'a—a ba=ab ) If \ny two of those ewht elements were
equal we should have wn addition il relitton not impled by the given
ones

Quatcrmon group of ordcr 4 Q,, Agun we have twao generators
¢ d and the generating relattons are o " =1 d* ¢ =1 cdc d=1 or
the latter two may be put in somewhat more convenwent form as

¢ —d «d—d ¢ Theelements of this group are | d d? d !
«od ud? «d®

ProBLEM S 1 Show that Dy ts 1somorphic to A4 X A, of Prob
ter 9 2 of Chapter 2 and 1s not isomorphic to @,

ProBrEm 52 Show that D 1s 1somorphic to S,

ProBLEM 5 3 Wnite out the composition tables for D, and Qs
Prove that these groups are not 1somorphic

PROBLEM 5 4 Find all subgroups of D, and determtne which
are invanant

PROBLEM 55 Do the same as Problem S 4 for Oy
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PrROBLEM 5.6.  For the invariant subgroups found in Problems
5.4 and 5.5, discuss the corresponding quotient groups.

6. CONJUGATES

Now, as promised, we consider some concepts which are of no im-
portance in abelian groups.

DEFINITION 6.1.  Let (G, [J) be a group. Two elements a, b
€ G (two subgroups H, K of G) are conjugates in G < d an inner
automorphism « of G D ae=b (Ha= K). The set of all distinct
aa (Ha), for all inner automorphisms « of G, is called a complete set
of conjugate elements (subgroups), or more simply, a complete set of
conjugates.

ExaMPLE 6.1. In 83, a”'ya = Bya= 8, so y and & are conju-
gates. Also, B87'vB8 = ayB =¢€, so y and e are conjugates. Further,
Ylyy=yyy=7v. t""yve =1, so y is a conjugate of itself. Finally,
87 1yd = 8yd = €, € 'ye = eye = §, and so, since the images of y under
all inner automorphisms of S, have been considered, {vy, §, €} form a
complete set of conjugates of v.

ProBLEM 6.1.  Prove that the relation of being conjugate is an
equivalence relation (both for elements and subgroups).

PrROBLEM 6.2.  Find all the complete sets of conjugates of ele-
ments and subgroups in S3; in Dg; in Qg.

PrOBLEM 6.3. Prove: H is an invariant subgroup of the group

G © H coincides with all its conjugates (hence the name, self-
conjugate).

THEOREM 6.1.  Let (G, [J) be a group and a € G. The set
N.= {xlx € G, xOa=aOx} is a subgroup of G, and if G is a
ﬁqlte group, (G : N} is the number of distinct conjugates of a (including
a itself) in G. The subgroup N is called the normalizer of a in G.

Proor: Since a € N, N is nonempty. Let x,y € N. Since
yOa=a0Oy, upon multiplying on the left by y~!, we have g = y!
Ua Oy and then., upon multiplying on the right by y-!, we have
a0 y'=y"10a. Therefore, y € N=y' &€ N. Hence, we have
GO Da=x00"'0a)=x0@yN=x0a Oy !'=
(@Ox)Oy'=a0 (xOy!). Therefore,x.y E N=xy ' € N.
Thervefore, by Theorem 1.7, N is a subgroup of G. ’

Let x € 4,y € B, where 4 and B are right cosets of G with
respect to N and suppose that x* Ja Ox=y"' O a Oy. Then a O
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t=¢(0y 'Da0s and so ¢ Ox Oy '=x[J) '[Ja Therefore
tOy '€ A 1nd so x 3 belong to the sime right coset Hence if
two elements of G provide the s 1me conjugates of ¢ the two elements
belong to the same nght coset Thus elements belonging to different
cosets give different coryugates Hence the number of conjugates 1s
at least equal to the number of cosets However ifve NOz ) €N
Do thenx=n 00 y=m32 where ny and 1, € N 1nd we have
s ta0v—. On'0al0n0c—'0e0z andy "Oe
y=.'0u, '0aeQn0~=¢ 'Qaldz Thus elements belonging
to the same right coset give the same conyugate of @ Therefore the
number of conpugates 1s (G N} "

COROLLARY 6 | The number of comugates of an element
@ € G 1 finste group divides the arder of the group

THEORFM 6 2 Let (G [0 be a group and H + subgroup of G
Theset N—{1jr € G xO H - H 1 x}as tsubgroupof G Hsan
invariant subgroup of N and if & s 1 fimte group (G N) 1s the
wumbes of dsstines 3 b of #w G ding H
itself) The subgroup N 15 called the normak er of } 1n G

Coro1LARY 62 The number of subgroups comugate to a
subgroup of 1 group G divides the order of G

PrROBIEM 64 Prove Theorem 6 7
PrOBLEM 6 5 Prove Corolluries 6 | and 62

PrOBLEM 6 6 Find the normalizer of each element n S; of
abmbD, ofc dmQ,,

ProBLEM 6 7 Prove that the order of the pormahzer of a sub
group A 1s greater than or equal to the order of

Tueorem 63 Let G be a finste group Then no preper sub
group H can contain elements from each of the complete sets of
conjugates of elements of G

Proor  Suppose H were such a subgroup and let / be its order
and fet £ be the order of G Let n be the order of the normahzer of
Hn G Then of course since N D H n = h Now H 1s one of gin
conyugate subgroups each of arder # The neutral element 1s common
to alt these comjugate subgroups and m G there 1s a total of at most
I+ (gin} (h— 1) elements Now the maximum value possible for
1+ (g/n) (h—1) 1s g but this only occurs if n — fi — g Inths case
H 15 not a proper subgroup Otherwrse this quantity 1s less than g
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and so the complete set of conjugate subgroups of which H is a member
cannot contain all the elements of G. Therefore, there must be addi-
tional elements of G, which is impossible. -

ProBLEM 6.8. Examine Ss, Dg, Qg in light of Theorem 6.3.

7. DIRECT PRODUCTS

Let us consider the cyclic group of order 6 generated by its element a.
We write it multiplicatively as G = {1, a, a?, a*, a*, a>} where «®= 1.
Let us also consider the following subgroups of G: H, = {1, a?, a'},
H,= {1, a’}. The first subgroup is generated by a2, the second by a’.
We easily verify that each element of G can be represented as a power
of a® imes a power of a*® as follows: a = (a?)2(a*)?, a® = (a*)'(a?)°,
at= (a?)®(a®)!, a'= (a®)2(a?)®, a®> = (a®)'(a?)?, a®* = (a*)°(a®)" = a°
= 1. We leave 1t to the reader to verify that this representation is
unique if we restrict ourselves to using exponents which are nonnega-
tive and less than the period of (a?) for any exponent placed on (a?),
and less than the period of {a*) for any of its exponents, and is unique
as far as the elements used are concerned. This decomposition of a
cyclic group of nonprime order is frequently possible as 1s established
by the following theorem.

THeOREM 7.1.  Let (G, ) be a group and let z € G. Then z
is of period mn where (m,n) =1, m>1,n>1=3i,y € H, the
cyclic subgroup of G generated by z, such that

(Hz=a0y

(2) the period of x is m, the period of y is n

G)aOy=yOnx

(4) this 1epresentation is unique.

Proor: Letu=z", v=2z" ThenuOv=v O u, since u and v
are powers of the same element. Also " = ¢ = v*, where ¢ is the neu-
tral element of G, and since z is of period mn, & must be of period m
and v of period .

Since (m,n) =1,3s,t € Z 3 sm+tn=1and (s,n) = 1, (t, m)
= 1. Hence, z=zmm=(z)' (z")*=u' O v. By Problem 2.15,
1" is of period m, and +* is of period n. Thus, if we take x = uf, y = v*,
we have the first three statements of the conclusion established.

To prove uniqueness, let z =1 [J y=x 0y, where a Oy=1y
OvaOy=yw0O A3, A and x, are of period m, y and y, are of period
n. Then, with s and ¢ as before, we have 1" [ Y= [y =M
=" (since y. y, are of period n) = A7 = y I~ = ¢ [ (_\"")'
O™~ == A;. Then, since G is a group, y =y,.

f=x



66 Groups

ProbLem 71 State and prove Theorem 7 1 with addition as
the law of composition

ProsiemM 72 Apply Theorem 7 | to 2= «® in the cyclic group
of order 24 generated by ¢

ProbieM 73 [et (G, [0) be a cyclic group of order mn with
(m,)=1 m>1, n>1 Prove that there extst two proper sub
groups H,, H, of G such that every element of G can be expressed
umquely as a product of an element of //, and an element of /,

DeriniTion 71 Let {G, [0) be a group let a, b € G, and let
H, [, be subgroups of G Then

(1) aand b are perutable >« Jb=604a

(2) a and H, are permutable = a D H, = H, 0 a

(3) #, and H, are permutable < every element of } 1s permut-
able with £, and every element of Hy 1 permutable with #,

ProBLEM 74 Prove that ¢ and a subgroup #, of a group
(G 0O) are permutable e Vi, € ¥y 1 € H, D a0l =hDa

ProBLFM 7 5 Prove that a subgroup # of a group G 15 invan
ant f and only if every element of G 1s perminable with #

ProBiEM 76 Prove that «f H1s a subgroup of a group G, then
every element of # 15 permutable with 7/

DEFINITION 7 2 A group (G [) 1s the direct product (or
dwrect sum if the law of 15 add of tts
Ha, Hyo

(1) every element of H, 1s permutable with every etement of H;
for ¢+ j,,5=1,2 .,

() x € G=37T unique ; € H, D r=0%, &, The element
m this 1s called the ¢ of x n H,;

ps, Hi,

If the law of compositton tn G 1s additton and if G 15 the direct
sum of the subgroups H, K we wnite G = H & Kk with obvtous gen
eralization to maore than two subgroups

ProBLEM 77  Show that the cychic group of order 12 1s the
direct product of cyche subgroups of orders 3 and 4 Find the group
product of a cychic group of order 3 and a cychc group of order 4 and
show that 1t 18 1somorphtc to the preceding group

PROBLEM 7 8 Show that the group product of two cyclc
groups of relatively prime orders 1s a eyclic group of order the product
of the orders of the onginal groups and show that 1t1s the direct product
of two subgroups 1somorphtc to the ongtnal groups
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ProBLEM 7.9. Show that any cyclic group of order mn, where
(m,n) =1,m > 1,n > 1, is the direct product of two cyclic subgroups
of orders m, n.

ProBLEM 7.10. Show that the cyclic group of order 9 is not
the direct product of two of its subgroups. Generalize.

ProBLEM 7.11. Show that the 4-group (any group isomorphic
to the group of Problem 10.1 of Chapter 2) is the direct sum of two
cyclic subgroups of order 2.

ProBLEM 7.12.  Show that the direct sum of two abelian groups
is abelian.

PrROBLEM 7.13. Prove: G=H D K,H,K of orders /A,
respectively = G is of order hk. Generalize.

ProBLEM 7.14.  Find all abelian groups of order 8.

PrOBLEM 7.15. Prove: G=H @ K = G/H is isomorphic to
K, G/K 1s isomorphic to H.

THCLOREM 7.2. The group G is the direct product of its sub-
groups H,,H,,...,H, &

(1) the subgroups H,, H., ..., H, are invariant subgroups of G

(2) G is generated by the subgroups H,, H,, ..., H, (cf. Defi-
nition 2.1.)

(3) the common part of each H, with the subgroup H,’, generated

by all the H,.i s j, is {e}, the subgroups consisting of the neutral
element of G.

_ Proor:  (In this proof, numbers prefixed by D refer to condi-
tions of Definition 7.2 and numbers prefixed by T refer to conditions
of Theorem 7.2.)

The theorem is trivially true if n =1, so we suppose that n = 2.
Consider the implication =>. First, we note that D2 = T2. To show
that T3 holds, let ¢ belong to the common part of H, and H,". Then
=h,3---0h,, where hy € H,i=2,3,...,n, and also c=h,
€ H,. Then we have two distinct representations of ¢, contrary to
D2. The same is true for any i. Therefore, condition T3 holds.

To prove T1, let k, € H;and g € G. Then g=h, O h, I - - -
Uh0O---0On, by D2, so ¢ OAOg=h"0h,_, ' 0O---0]
™ - 0Oh"0AO/MO -0y Ohy=h"0k0Ohk by
f:ondn.tion D1) and this last element belongs to H,. Therefore, H;is
mvariant in G.

Consider now the implication «=. To prove DI, let h, € H, and
h, € Hy.i # j. Then h,-' O h,* O h, € H,, since H; is invariant, and
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simlarly, A, OO0y € Hy Hence, (K040 040 E
H; since each of the two indicated fuctors € ; and #; 15 a group,
and simalarly, 710 (O QM) € Hy Now by T3, H,N H,
={e} Therefore &, ' A7 01O hy= e, and so by multiplying on
the left by /,, and then by hy, we get successively, i [ 0 hy = hy
hy O fiy=hy O by Therefore, conditton DI holds

To prove D2, we observe that T2 gives us at least one represen
tation of each ¢ 1n G 1n the desired form (using D1 1s necessary) Let
us suppose thit we have two such say, x=, D0 - Ou=y,
04,0 O1,, where at least one i # vy, say #, # 4, (since the
u s are permutable and so are the +'s, 1t makes no difference which we
suppose are unequal) u, v, € #, Then we have v,"' D, = (1.0

Cha) Ot '8 Du, V=004 0 00.00™,
by permutability and here the element on the left € #/, and the one
on the nght € H, Thts 1s impossible by T3 unless each element 15
equal to ¢ Then #, =1, etc Therefore D2 holds ]

TurorrM 73 In Theorem 72 condition (3) may be replaced
by

(4) the common part of #, =23 n, with the subgroup
generated by H, Hiys {e}

PROBLEM 7 16 Prove Theorem 7 3

8 PRODUCTS OF SUBGROUPS OF GROUPS

We have been consudening the direct products of two or more sub
groups of a group and among other conditions the subgroups had no
elements 10 common other thn the neutral element and each element
of one subgroup was permutable with every element of every other
subgroup Under these conditions the product was a subgroup and
w the case of finite groups its order was the product of the orders of
the subgroups We shall now consider what happens when we drop
these two conditions and consider merely the product of two sub
groups, # and A 1n accordance with Defintion 3 1 Theorem 8 1 gives
us the result about the number of elements and Theorem 8 2 gives the
condition under which the product 1s a group

THeoREM 8 | Let 4 and B be finite subgroups of order a, b,
respectively, of a group (G O) and C=4 N B be of order ¢ Then
the product 4 [ B has exactly ab/c elements

Proor By Theorem33 B=(CO&,) U (COb) U Y
(C O ba), where b, & C for ¢ > 1 and CQ b % CO by, f 1 # 1
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n=>bjc. Thus AOB=[A0C)0OnJ U --U[(A0C)Ob,].
Now by Problem 3.10, 4 [0 C =4, since C C A. Hence we have
AOB=A0Ob) U (A0Oby) U---U (40by). Further, (40
b) N (A0 b) =@, ifi # j,sinceifx € (40 b,) N (A40Db),i#],
we should have x = a, [J b, = a, O b,, where a;, as € A. Then a,™' UJ
a; = by (0 b,~! would belong both to 4 and to B and so to C, but this
would make C 0 b,= C O b,, contrary to the representation of B
given at the beginning. Hence, the sets A [J b, are disjoint, there are
n=blc of them and there are a elements in each one. Hence, the
number of elements in A O B is a - b/c. n

THEOREM 8.2. Let A and B be subgroups of a finite group
(G,0). Then D=4 [ B is a subgroup of G < 4 0 B= B [J 4.

Proor:  Consider the implication =. Let D = A [J B be a sub-
group of G, and let a € A, b € B. Thena! € A, b™' € B and so
a'0b' € AOB. Since Disagroup, (¢ 0 b ") '=>b0a € D.
Thus, YVa€ 4, Yb € B, bOa € ATOB. Therefore, BL1A4 C
A [0 B. However, since the number of distinct elements in 4 [J B and
B Ul A4 1s finite and the same (obviously from Theorem 8.1), 4 U B
=B[JA4.

Now consider the implication<=. LLet 4 [0 B= B (04 = D. Then
D’=(40B)0AOB)=4A0(BOA4) OB=40A0B)0B
A*0B*= 4 O B, by Problem 3.8. Hence also by Problem 3.8, D
is a subgroup of G. »

]

We shall now consider a special case of the product of two sub-
groups. Let H be a subgroup of order /1 of (G, O}, and K a cyclic sub-
group of G generated by the element a of period n, and let @™ be the
lowest positive power of ¢ which is in H. We shall first prove that m|n.
If we let d = (m, n), we have by Theorem 17.3 of Chapter 2, sm -+ tn
=d,wheres,t € Z. Now a? = g+ = g [J (¢")! = a® and so a? €

H. Hence, d cannot be less than m and so d = (m, n) = m. There-
fore, m|n. -

Now since a™ € H, its period n/m must divide /i. We have now
proved

THEQREM 8.3.  His asubgroup of order hofagroupG,a € G,
ahas period n, ¢ € Handa* @ Hfor0 < h < m= m|n and nfm|h.

_ THEOREM 8.4.  Let H, and H, be two subgroups of a group G
with the properties:

(l) each element of H, is permutable with H. and each element
of H, is permutable with H,.
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Q) H, 0 Hy={e}
Then each element of H, 1s permutable with each element of #,

CoroLLARY 8 1 If 71, and H, are mvarant subgroups of a
group G and if #, N Hy={e}, where ¢ 15 the neutral element of G,
then H, O H, 15 the direct product of /1, and I/,

THEORFM 8 5 If #,. H; are invariant subgroups of a group G,
then the group generated by M, and ;1s I/, D H,

ProsLem 8 1 Prove Theorem 84 (Hint lete € H, b € H.
and consider a~'b~*ab #s m the proof of Theorem 72)

ProprEn 82 Prove Corollary 8 1

PropLCM 8 3 Prove Theorem 8 5 generalize, and prove your
generalization

9 FREE GROUPS

Thus far the methods we have used for finding actual specific groups
have been those of considenng a set of 1-1 mappings of a set E, subsets
of Z and of forming product groups or quotient groups from groups
already hnown We shall now consider snother method Certatn
aspects of this method may remind the reader of the methods used
the proofs of Theorems | 3 and 15 but it should be borne 1t mind
that wn Lhose proofs we were aperating ta a group ar a senugroup from
the very beginmng Here we are not

DeFINITION 9 | Letd be aset and E = 4 x {{,— 1} Weshalt
write the element of E as ¢ where « € 4 and ¢ € {I,—1} A fimte
sequence of elements of E is a word Two elements a,. g, of a word
are called adjacent 1f and only if exther 1 =7+ 1 ory=1+ 1 We shall
write adjacent elements 1n 2 word next to each other without commas
et¢ Thus a word may be written n the form » = x, ®v . %
where oy ==%1 =12 n The word w 15 a reduced word If and
only if no symbol x,*! 1s adjacent to v, ! In a reduced word », the
aumber of elements actually present 1s the fength of the word and s
denoted by L(n) Further the null set 1s called the empry word, and
1s denoted by wo, and L(n,) =0 Lastly, the product of the words
Wi T XM Xe, ™ B0 Wy = P Xy, B s ngg = XV

Kap o WhEte = yi= g, fer a= L2, n, and o= dew

=8 Jfori=n+1n+2, ,n+m

The set M of all words formed from E with product defined as
above, 1s easily seen to be a semigroup with a neutral element, simnce
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it is easy to prove that this law of composition is associative. M,
however, is not a group since no element other than the neutral element
has an inverse. We shall now proceed, as we have often done before,
to introduce an equivalence relation in M, and then prove that the
quotient set is a group.

DerFINITION 9.2.  Two words, w,, w, are adjacent < either
wy = uxx.~% and w, = uv, where « and v are words, or w, = uv and
wy = nxSx. "%, where 8 ==1. Two words are equivalent, written
w, = 1w, <> J a finite set of words uy, g, . . . , Uy D U, and u,yy are
adjacent, i=1,2,...,m— 1,wy; =1, and w, = 1y,

We leave to the reader the task of showing that = is an equivalence
relation.

ProBLEM 9.1.  Prove that the product of words is associative.
ProOBLEM 9.2.  Prove that = is an equivalence relation.

ProBLEM 9.3.  Find a reduced word equivalent to wyws where
Wy =gt e P et oy = X g T g T s T g T, Do the
same for wswy. In both cases, find the intermediate words.

ProBLEM 9.4. Proceed as in Problem 9.3 for
Wi =2 0 T T s T e T T, e = x T i g g

ProBLEM 9.5.  Find equivalence classes which are the inverses
of the classes containing w, and w, of Problem 9.4.

TH.EOREM 9.1.  The equivalence relation of Definition 9.2 is
compatible with the product as defined in Definition 9.1.

ProoF: Letf=handg =4, and let f=uy, tts,. . ., 11, = h be
a set of words such that u,, u,., are adjacent fori=1,2,...,n~—1,

«;’ ='\’1, Va,. .., vy, = A be a set of words such that v,, v,,, are adjacent
orj=1,2,...,m=1.Then ug, u,,g are adjacentfori=1,2,. . .,
n—1, and vy, hv,,, are adjacent forj= 1,2, . . . , m — 1. Hence, since

g = hg = v, we have the set of words fg, g, . . . , tty_sg, hg, hv,,

««+s lvyy, WA in which each consecutive pair is a pair of adjacent
words. Therefore, fg = hk. =

' THeEOREM 9.2.  The quotient set of M of Definition 9.1 with
respect to the equivalence relation of Definition 9.2 is a group F called
the free group generated by the set A.

T PROOF:  Let F be the quotient set. Since M is a semigroup, by
eorem 9.1 .above and Theorems 12.1 and 12.2 of Chapter 2, Fisa
Semigroup. Since M has a neutral element 1w, the equivalence class
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contuming w Is 1 neutral element for F If w =x "x,= X %

"
then the equivilence cliss cont untng ey FnXe, ¥ ®san
inverse for the equivilence cliss contuning w  Therefore F s a
group [ ]

DeFiniTION 93 The ¢wrdinil number of the elements i the
set A 1s called the rank of the free Lroup F generated by A

PROBLEM 96 Prove that 1 free group of rank 1 1s eyclic and
1s 1somorphic to the wditve group of 7

Tucorem 93 Inafree group £ no element except the neutsal
element has finite penod

Proor Let w — ¢ Ay = x " ben word not equivalent
to the empty word Thcnumny bethaty = and ¢ @ Xe,mandx,, ot
X, mnd ¢ n & are purs of inverses bul by the hypo(heﬂs

e
made on T2 x, % vand ¢, " & are not inverses of ewh
other Thenwelets —x & v, % andwehave¥s € Z*
[ X, X W ¥, winch 55 a reduced word

# it s clear from Deﬁml on 97 thit 1wo words are equivalent if
and only if we can go from one to the other by inserting or suppressing
a fimte number of x *v * So 1if two words are equiv lent 4t lerst one
of them must have one or more (unsuppressed) x v, * Two reduced
words do not Thus two d stinct reduced words must be inequivalent
Hence s not equivalent to the empty word L]

TreoREM 94 Every proup s 1somorphic to a quotient group
of a free group

ProoF Let G be a group and A a set of generators of G (there
always exists 1 set of generators for any group 1f necessary tahke all
the elements of G as M) Let I be any set of elements such that
there exists a 1 | mapping a of W onto M and let F be the free group
generated by W If we then for x € F denote x a by ac we have
a mapping of F onto G such that (x Xe,Sn)e a.* (lc
which 1s obviously a homomorphism of £ onto G Hence by Theorem
41 G s somorphic to F/H where H 1s the normal subgroup of F
consisting of all equivalence classes contuming all words x,. # xe, '
whose 1mages a ¢ ¢n are all equal to the neutral element
of G L]

DEFINITION 94 Let x.* X, P be any word in H of the
above proof Then the equation g, ® a.f =1 implied by the 150
morphism & 1s a relation between elements of M Let K be a set of
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elements such that the normal subgroup H of F of the above proof
is generated by K, then the set of relations in G corresponding to
the elements of K is called a ser of defining relations of G.

ExaMPLE 9.1. Let G be the cyclic group of order n. Here we
may take M = {a}, where a is a generator of G. We may take W = {s}.
Then H will consist of the set {s""}, V A € Z. Since s" is a generator
of H, a set of defining relations of G will consist of the single equa-
tion " = 1.

PrROBLEM 9.7. Let G be the abelian group of order 9 which is
the direct product of two of its cyclic subgroups of order 3. Find a
quotient group of a free group isomorphic to G.

Using Theorem 9.4 we can start with a group and find a set of
defining relations. However, we can also proceed in the opposite
direction as well. That is, we may start with a set A of symbols and
an arbitrary set of relations equating certain words formed from these
symbols to 1, and there will always be a group for which these rela-
tions form a set of defining relations. For, we may take the free group
generated by 4 and the normal subgroup generated by the nonempty
sides of the given equations and the quotient group will be a group
with the desired defining relations.

EXAMPLE 9.2.  Cyclic group of order n, C,. Here we need
only one defining relation; a" = 1 where a is a generator of C,. If any
lower power of a were I, this would imply an additional relation.

EXAaMPLE 9.3.  Dihedral group of order 2n, D.,. (See Section 5
above.)

. EXAMPLE 9.4.  Quaternion group of order 4n, Q. (See Sec-
tion 5 above.)

| ;’ROBLEM 9.8. Give defining relations for the group of Prob-
em 9.7,

PrROBLEM 9.9.  Discuss the general groups Ds, and Q,,.

THEOREM 9.5. Ifa group G is given by a set of defining rela-
tions and a group G' is given by a set of defining relations, which

includes all the defining relations of G, then G’ is isomorphic to a
quotient group of G.

PR?BLEM 9.10. Prove Theorem 9.5. (Hint: represent G,G’
aS quotient groups of the same free group.)
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10 SYLOW THEOREMS

The converse of [ agrange s Theorem holds for cyclic groups, but not
for all groups We shall, m the next section, give an example of a
group of order 12 which does not have a subgroup of order 6, although
612 1n the present section we shall consider a theorem which 1s a
partial converse of Lagrange's Theorem

DEerintTION 101 Let G be a finte group of order n and let
p € Z* where p1s apnme Further, let p™ be the highest power of p
{(with posttive exponent) which divides # Then a subgroup # of G 15
a Sylow subgroup < the order of H 15 p™

THEOREM 101 Let G be a finite group of order n and pbe a
positive rational prime dividing n Then G has at least one Sylow
subgroup of order p™

ProOF If n=pm, the theorem ts obviously true so we shall
suppose that n # p™ The theorem 1s obviously true if n=2, and we
shall proceed by induction by suppostng that 1t 1s true for all orders
less than »

(1) The central of G consists of the neutral element alone Then
by Problem 6 I, the elements of G fall into disgoint sets of conjugate
elements Let &, h,, ki, be the numbers of ¢lements 1n these sets
In the case we are constdering, one of the ft; say fy, 15 1 (this 1s the
number of elements n the set contatming the neutral element), and
all the other /; are greater than | We have thenn=1+/h,+ /s
+ k. Since pln, and pJ1 there must be at least one fi, ¢ > 1, say &y,
3 plhy Now by Theorem 6 1 n/h; 15 the order of a subgroup of G,
namely the normahizer N of one of the elements of the complete set
of conjugate elements whose number s &; Thus p™{{nfh,) and so by
induction hypothesis N has a subgroup of order p* and this subgroup
15, of course, a subgroup of G

(2) The central of G has elements 1n addition to the neutral ele-
ment Let s be one such elemens and we may suppose that its period
1s 2 pnme for of s 1s of period rk, where r1s a pnme, then s* 1s of
period r, and s* belongs to the central

(2a) 515 of period p Let S be the cyclic subgroup of G generated
by s Then G/S 15 a group of order n/p and p™=*}(njp} and so G/S has
a subgroup §* of order p™~! Then by Theorem 4 4 G has a subgroup
H corresponding to § , and the order of H must be p™

(2b) 5 1s of peried g ¢ p Let S be as before Then the order of
GiS 1s divisible by p” and if 1t 1s not p™, then, as before, G has a
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proper subgroup whose order is divisible by p™ and so by induction
hypothesis, this subgroup, and G also, has a subgroup of order p™.

If the order of G/S 1s p™, then G is of order p™q. Since s € the
central, C, of G, every element of § € C. Thus, for each element of
G, the normalizer contains S. Hence, the order of each normalizer
is divisible by ¢, and so, by Theorem 6.1, no 1, (of case 1) is divisible
by ¢. Hence, in the notation of case 1, p"g =1+ i, + - - + + hy, where
none of the &, is divisible by ¢, and since there are at least g ones,
there must be more than g ones. Thus there must be an element
t€C 2t €& S. The period of + must be divisible by p, and not by
q, since G cannot contain a subgroup of order ¢g®. (There would be a
subgroup of this order, since f, s € C, and we may suppose, as before,
that the period of ¢ is p.) Let T be the cyclic subgroup of G, generated
by t. Then G/T is of order p™~!q and so 1t contains a subgroup of order
p"~'. Hence, G has a subgroup of order p™. ™

CoroLLARY 10.1. (Cauchy’s Theorem.) If a positive rational

prime p divides the order of a finite group G, then G has elements of
period p.

CoroLLARY 10.2. If p* divides the order of a finite group G,
where p 1s a positive 1ational prime, then G has a subgroup of order p*.

ProOBLEM 10.1.  Prove Corollary 10.1.

PrROBLEM 10.2.  Prove Corollary 10.2. (Hint: show by using
the relation n =1+ hy + - - - h, of the proof of Theorem 10.1, that

a group of order p™ has a central of order at least p; then proceed by
induction.)

ExXaMPLE 10.1. We shall determine all groups of order p?,
where p is a positive rational prime. Let G be such a group. If G has
an element of period p2, then G is cyclic. If not, then its p? — 1 ele-
ments, other than the neutral element, must all be of period p. A sub-
group of order p contains p — 1 elements of period p and none of these
cm: be in any other subgroup of order p. Therefore, there must be
(P>~ 1)/(p—1) =p + 1 subgroups of order p. By Corollary 6.2, the
number of subgroups in a complete set of conjugate subgroups must
divide the order of the group, namely, p?, and so at least one of these
P+ 1 subgioups must be invariant. Let @ be a generator of this sub-
group G. and let b be any element of period p S b € H. Then
b*Hb = H. Hence, b~'ab = a*, forsomeh € Z*,0 < k < p. Hence,
b’:«:b’ =a" and finally, brab”=a"" =a=>k"=1 mod p. But,
M™'=1modpandsol =1modp. But,0 <A < pand k = 1| mod p
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=4 —1 Therefore ab=ba ind so G 15 an abeln group which 1s
etther cyclic or the direct product of two cyclic subgroups of order p

ProsLEM 103 By using the first Sylow Theorem and the type
of resontng used i the above example show that if a group has
order pg where p and g re distinct pesittve riuenal pnmes with
p < g then etther G s cyclic and this s the only possible case if
q# 1modp or ifg ~ I modp G may be non abelian (Hmnt mthis
fatter ¢rse if & b e elements of penods p g respectively then the
defintng relitions will be a* =5b%=1t a "ba— b* where 815 a root
of g =lmodg B#1)

THEOREM 102 Let G be 1 fintte group of order # ind pbe a
posiive ratienal prime such thit p7 s the highest power of p dwviding
n Then the Sylow subgroups of order p™ form a complete set of con
Jugate subgroups and the number of them 1s congruent to 1 mod p

Proor (1) We shall first prove that 1f #f 1s 1 Sylow subgroup
of G of order p* then the only elements of G which are permutble
with £f and hive periods which ire powers of p e the clements of #

Let s be an element of period p* permutible with # and let K
be the subgroup generated by + Then #A — A# nd so by Theorem
82 HK s 1subgroup of G If the lowest posive power of s which
1 H s s " (cf first conclusion of Theorem 8 3) then # N A 1s of
order p* " (since the powers of s which e in 7 will be (")} y=1 2

p* ") and so by Theorem 8 I the order of HA 1s p'pH{p* "
=p"*>p which 1s impossible since # 15 t Sylow subgroup
Therefore » € #

2) We shull next prove thit 1f # wnd H are two subgroups of
order p* andif A= H N H s of order p* then the elements of H
transform H,anto exactly p # conjug, ite subgroups

By the result just established the only elements of £ which trans
form #, into itself wil be the elements of A, There are p * cosets
of H with respect to A ind the elements of each coset obviously
transform A into the same conjugate subgroup while the elements
of two different cosets give different subgroups conjugate to #, (For
f e Hiw=hy Hhe o then H =Inh Hih '— (hy ) H
(th ') and so itli € A Thus #y h, are members of the same
nght coset

(3) If H H, are Sylow subgroups of order p and # s conju
gite ta H then by (2) there are at least 1 + p 2 distinet subgroups
conugate to H namely # itself and the p* # subgroups comugate to
H, obtamed 1n (?)



Sylow Theotems 77

(4) By induction it follows easily that the total number of sub-
groups conjugate to H is of the form 1 + p"=ft = pm=fz 4 . - - 4 p"=hy
and so is conjugate to [ mod p.

(5) If there exists another Sylow subgroup L, and if L is not con-
jugate to H, then by continued application of (2), we find that the
number of Sylow subgroups in the complete set containing L is the
sum of positive powers of p and so is congruent to 0 mod p. But the
above reasoning now applied to L instead of H shows that the number
is congruent to 1 mod p. Therefore, the Sylow subgroups of order p™
form a complete set of conjugate subgroups. n

CoroLLARY 10.3. There is only one Sylow subgroup H of
order p™ of G < H is an invariant Sylow subgroup of G.

DEerFINITION 10.2. A group G is simple if and only if no proper
subgroup of G is invariant.

As examples of application of the second Sylow Theorem:

ExaMpLE 10.2. We shall show that no group of order 30 is
simple. Such a group G would have 5+ 1 Sylow subgroups of order
5 and so 6 - 4 elements of period 5. Also, there would be at least
I +3 =4 Sylow subgroups of order 3 containing 4 - 2 = 8 elements
of period 3. We have now, including the neutral element, at least
24+ 8+ 1 distinct elements and we have not yet considered the

Sylow subgroups of order 2. We have thus too many elements and
$o G cannot be simple.

'EXAMPLE 10.3. A group G of order pg, where p and g are
distinct primes such that p # 1 mod g and ¢ # 1 mod p is abelian. For,
the number of Sylow subgroups of order p must divide g by Theorem
6.2 apd also must be = 1 mod p by Theorem 10.2. Therefore, by the
C(‘)n(.iltion g # 1 mod p, such a Sylow subgroup must be invariant.
Similarly, a Sylow subgroup of order g must be invariant. Therefore,
by Theorem 8.2, G is the product of these subgroups and since their
tommon part (by an obvious consideration of periods) is the neutral
element, by Corollary 8.1, G is the direct product of these two cyclic
subgroups of distinct prime orders, and so G is cyclic and also abelian.

PROBLEM 10.4. Find all Sylow subgroups of S; and verify
Theorem 10.2.

PROBLEM 10.5.  Prove that no group of order 56 is simple.

. PROBLEM 10.6.  Prove that G is abelian if G is a group of order
P q. where p and g are positive primes such that ¢ < p and qlp—1.
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ProBLEM 107 Prove thit if every Sylow subgroup of a group
G 15 mvanant, then G s the direct product of its Sylow subgroups

11 PERMUTATIONS AND PERMUTATION GROUPS

Derivition 111 A |-1 mapping of a set £ onto itself 1s called
a permutation of L The set of all permutations of E 15 called the
symmetric Lroup of the set E and 1s denoted by S¢ If E 1s a fimte
set of nn objects S 1t is often culled the svmmetric group of degree
n and 1s denoted by 5, In this ¢ase each element 1s sad 1o be of
desree n

PROBLEM 111 Find S,
ProeLFM {12 Show that §, 15 of order n!

DerINITION 112 A I-1 mapping a of a group (G O) onto
a group {H C) s an ann isomorphism of G onto H &>V a b€ G
(e T b)a— (ha) C{ar) I G — H the mapping 1s crlled an ant
automorphism

DEFINITION 11 3 Let E be a set which is closed with respect
to an internal law of composition O A right (left) translation of E
8,(va) determined by a € L 1s the mapping of E nto stself defined
by x3.=x0a (xy,=a0x) YYEE

THEOREM 111 The set Ty (T;) of all nght (left} translations
of a group (G forms a subgroup of 5, and Ty (T, ) 15 150morphic (antt
tsomorphic) to G

PrROOF 3, 15 a 1 1 mipping since if xda=) [Ja then
becwse G ts agroup x — v

8, 15 an onto mapping since fw € G Iv € G 3y Ha=n
Thus 38, — »

Te 15 closed since x(8,8,) = (x84)8, = (x J a)8, — (x T @)
Obs—-xD («Ob) =8,0p

The wdenttly mapping 15 §, where ¢ 1s the neutral element of G,
and obviously &, 1s the neutral element of T,

Each 8§, has an imverse 5, smee (¥6,)8, 1— (x D a)d, *
=(x0Ow0a'=x0@Ba")=x0e=18 = 88,1 =8 S
larly 8.-18, = 8. Therefore since the assoctative law obviously holds
m G Tgis asubgroup of S, Similarly T, 15 a subgroup of S¢

Next we prove that the mppinga — 8, ¥V a € G 1s an isomor
phtsm of G onto T, That it 15 a i-1 onto mapping 15 obvious That
a0 b~ 8,8 follows from the third sentence of the proof Therefore
1t 1s an 1somorphtsm
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We leave the proof that @ — vy, is an anti-isomorphism of G onto
T, to the reader. -

CoroLLARY 11.1. (Cayley.) Every finite group G of order n
is isomorphic to a permutation group of order n and degree n.

CoroOLLARY 11.2  Every group G is isomorphic to a group of
left translations.

ProBLEM 11.3. Complete the proof of Theorem 11.1.

ProBLEM 11.4. Prove Corollary 11.2. (Hint: use the mapping
a—=> y,1.)

ProBLEM 11.5. Find Ty and T, for S;.
ProBLEM 11.6.  Find for S; the group of Corollary 11.2.

THEOREM 11.2.  Every element of T 1s permutable with every
element of T,. Further, if 8 is a mapping of G into G, permutable with
every y,(8,), then 8 € T,(T,).

PROOF:  x(v48y) = (xy)8p = (a0 x)8y, = (a D a) O b=0a U
(A 0b) =a0 (a8,) = (x8,)va = x(8yya), ¥ x € G. Therefore, .8,
= 8yYq-

Let B be any mapping of G into G 2 By, = v.8,Vx € G; then
=T e)B=(ey:)B=e(v:B) = e(Bys) = (ef)y-=21 1 (eB) =
A0b where b= e¢B, Therefore, B =295, We leave the other case
to the reader. n

ProBLEM 11.7.  Finish the proof of Theorem 11.2.

DEFINITION 11.4. A permutation P on the n objects ay, a,,
-+« @y 1s a cycle (also called a cyclic permutation or a circular permu-
tation) if and only if there exists a subset a,,.a,, ..., a, of the a’s
such that under P, a = a, ., forj=1,2,...,A—1, a, = a,, while
e = for w s f,,j =1, 2,1. . k.

Two or more cycles are disjoint if and only if the subsets involved
are disjoint.

THEOREM 11.3. A cycle, P € §,, which leaves n — A of the
@, ay, . . ., a, unchanged is of period k.

Proor: If j> 0, then under P, ap, = a,, where g=p+J
Wde A and 1 <q<j If P=¢, then p=gq. ¥ p, and so the smallest
J1or which this is true is j = A. Therefore, P is of period A. n

THEOREM 11.4. A permutation P # 1,P € §,. can be ex-

pressed as a product of disjoint cycles uniquely except for the order
of the factors.
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ProsLem 118 Prove Theorem 114

it dyasitg

PROBLEM 119 Express(
@005\ U6y,

) in the form of Theorem
1ta

dbeac,

PrasLeat {1 11 Prove that the pertod of a permutation 1s the
lem of the pentods of the disjoint cycles of which it 1s the product

PropLEM 1T 10 Do the same as Problem 11 9 for ("b“lf)

A matter of notation  Since 1n a cyclic permutation all objects
not 1n the subset given i Defimtions 114 are mapped each onto
itself they may be omutted and the cyclic permutation of Definition

aa, a,

11 4 may be written as ( ) and repetiion of symbols may

agay, «
be avaided by wniting this onone hine as (¢ «, a ) withthe under
standings that

{3y each element except the last 15 mapped onte the one which
succeeds 1t

{2) 1he 1t elernent 1s mapped onto the first {of course any ele
ment not histed 1s mapped onto 11self) If 1t be desired (o mndicate all the
n objects involved this last miy be written as (¢ a Ma, )

(ay,) where each of the a, j >k 1s mapped onto itself

Also we m1y omit the letier a and wnite the permuttion merely

A

n terms of the subsenipts  thus (¢ «, ) — (e 5)
ProsLEM 11 12 Wnite as 1 product of disjoint cycles in single
lite for (l23456789)
"™ 312465987

ProsLEm 1113 Repeat Problem 112 for (123)(256)(789)
(78)(12)

DeriNiTION 115 A cycle of degree a in which each of exactly
n— 2 objects s mapped onto stself 1s called a transposition

THEOREM 115 A permutation can be expressed as a product
of transpositions and for 1 given permutation the number of transpost
tions n such a product is either always even or always odd

PROOF By Theorem 1t 4 we can prove the first statement by
proving 1t for a cycle Now (qa, a)—laa)aay)
(aa)

Now for the second statement Let L, — I, wcjcn U #) Lpi152
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product of positive integers and so it is positive. Let us consider the
effect upon L, of the single transposition (k, m), where, for definite-
ness, we may suppose that k < m. The only factors of L, which are
changed in sign by (k, m) are the factors (m — i) where i = k and
(j—h) where j= m. Of the first type, we have (m— (m—1)),
(m—(m=2)), ..., (m—k), of which there are m — A. Of the sec-
ond type, different from the first, we have ((m — 1) — &), ((m—2) — k),
..., ((A+ 1) —4), of which there are m — k — 1. Therefore, there
are 2m — 2k — 1 factors which are changed in sign, whereas all others
remain unchanged. Since 2m — 2k — 1 is odd, (&, m) changes L, into
—~L,. Thus, a permutation which is a product of an even number of
transpositions will leave L, unchanged, while one which is a product
of an odd number of transpositions will change L, into —L,. Clearly,
a given permutation, however it may be expressed, will always have
the same effect on L,. Thus, if a permutation is expressed as a product
of transpositions, the number of transpositions will always be even
or else always odd. B

ProBLEM 11.14.  Express the permutations of Problems 11.9,
11,10, 11.12, 11.13 in the form of Theorem 11.5 each in at least two
different ways.

DEFINITION 11.6.  An even (odd) permutation is one which can
be expressed as a product of an even (odd) number of transpositions.

' THEOREM 11.6. The set of all even permutations in S,, n > 1,
1S an invariant subgroup of S, of order n!/2; it is called the alternating
group of degree n, A,,.

ProoF: If 5,1 € A4,, then each can be expressed as a product
of an even number of transpositions and so their product is also so
expressible. Therefore, by condition (3) of Theorem 1.1, 4, is a sub-
gioup of §,,.

To prove the invariance ofA,,lets € A,and v € §,. Then s can
be expressed as a product of an even number of transpositions, while
tand 1~ together require an even number of transpositions, whether
1 be even or odd. Therefore. u~'su is expressible as a product of an
€ven number of transpositions and so «~'su € A,,.

Now let p,, ps, . . ., P be the distinct permutations in 4, and let
G be an odd permutation. Then qp1. qPs. - - ., qp;, are all odd and, since
the canceliation law holds in a group, they are all different. Therefore,
:Ezr‘;lﬁle }a]t leas_t as many odd permutations.in. S, as even ones. On
in s lehr and. if ¢y, ¢s. . . .. g, are all the distinct odd permutations

ne €N qiqy, q1qs. . . .. q1qn are all even and all distinct, and so
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there are at least 1 many cven permutations as odd Therefore the
number 1s the same and equals #%/2 M

ProBLEM 11 1S Find A; A,

ProbLEM 11 16 Find the compostion table for A, (use single
Iine notation)

ProsLeM 1117 Find all the subgroups of 4, noting n par
uculr that there 15 no subgroup of order 6 thus showing that the con
verse of Lngrange s Theorem does not hold 1n general

ProsLEM 11 18 Find Al invanant subgroups of A, noting 1
particular that # = {1 (12)(34) (13)(24) (14)(23)} 1s1nvanant (cf
Theorem 11 7)

ProBLEM 11 19 Prove that S, 1s generated by the n — 1 trans
posttions (12) (13} (ny [Hmt () = (nIndy) ]

ProsLEM 1120 Generihize Problem 11 19 to transpositions
cach of which nvolves wmy one particutr & forany K l<sh=u

ProBrrm 1121 Prove that A, 1s enerated by the 3 cycles
(7)) (124 2y [Hit (1)) — (g) = (1200120 (12) ]

PROBLEM 1127 Generahize Problem 1121 to 3 cycles all of
which involve any 2 fixed obects

We shall conclude our comstderation of permutations with a
theorem which we shall find of the utmost importance m the Galots
Theory of Equitions For thit we require a lemm1

LeMMa  Whenever an 1av iriant subgroup §f of A, nt >4 has
a3cycle then H =4,

Proor Let (123) € H Then (123)? - (132) € H Since H
15 mvanat o (132 € H Vo € A4, Let o= {13k A>3
Then o (132)oc=(12k) € H ¥Yi>3 Therefore by Problem
1121 A,— H The details of the case when some other 3 cycle 1s
assumed to belong to # are left to the reader L]

ProBLEM 11 23 Chrry out the details mentioned mn the above
proof (Hint use Problem 11 22)

THEOREM 117 1> 4= 4,15 simple

PrOOF  Let / be an invariant subgroup of 4, and let H # {e}
We must show that H = 4,
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Let p be a permutation in H, p 5 e, which leaves fixed as many
objects as possible. p cannot leave n — 2 objects fixed, for then it
would be an odd permutation and then p & A,. Therefore, p must
affect at least 3 objects and if we can show it affects exactly 3, the
lemma will imply that H = A4,,.

Suppose that p affects more than 3 objects. Then in the represen-
tation of Theorem 11.4, either (1) p has a cycle consisting of at least
3 objects, or (2) all the cycles are transpositions.

In the first case, we can take p = (123...) ..., and here p would
affect at least 5 objects, say 12345, since a 4-cycle is an odd permu-
tation and so cannot belong to A4,. In the second case, we can take

p=(12)(34) ... .
Now we transform by o = (345) and get, of course, another
element of H. In the first case, py =c lpac= (124 . ..) ... . In the

second case, p, = o~ lpo = (12)(45) ... .

Thus in both cases, p # p;, and so p~'p # e. The permutation,
p~'p; leaves fixed all number > 5, since for k > 35, the effect of per-
forming p 1s the same as performing p;. But p~p, leaves fixed in both
cases the number 1, and 1in the second case the number 2 as well.
Therefore, p~'p, leaves fixed more objects than does p,and p~'p; € H.
Therefore, our supposition that p affected more than 3 objects has led

to a contradiction and so 1t is false. Therefore, p is a 3-cycle and
H=4,. |

CorOLLARY 11.3. 1 # 4 = A4, is simple.

ProBLEM 11.24.  Prove Corollary 11.3.

12. FINITE ABELIAN GROUPS

The problem of determning the stiucture of finite abelian groups has
been completely solved. We now consider it. We shall use addition as
the law of composition in this section and so the neutral element of
the group will be denoted by 0.

THEOREM 12.1. If G 1s an abelian group of order g = p,%p,™
" P"h, where the p, are distinct primes, then G=P, ® P, ® - - -
© Py, where P, 15 a subgroup 1n which all nonneutral elements have
as periods, powers of p,,i=1,2,...,A and the order of P, is p.

PROOF:  First, we shall prove that the set of all nonneutral
gemems having as periods, powers of P, and 0 form a subgroup of
P Let 1 and y be two such elements: i.e., p"A=0,p"y=0
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(remember the p and p™ are additive exponents) Then if ¢ = max
(m n) p*(x+1}=0 Therefore by Theorem 11, these elements
form a subgroup which we shall denote by P,

We shall now apply Theorem 7 2 with the H, there our present
P, Condition (1) 1s obviously satisfied since G 1s abelian and so 1s
condition (3) using Lagrange s Theorem since the p, are distinct We
must stll prove that condition (2} holds For this let z € G and be
of penod p,* ps™* Pyt where of course some of the s may be
zero 1t easily follows by induction on the number of distinct primes
actually present by Theorem 7 1 that .= v, + ¢, + + x, where
x either 1s the neutral element or 15 an element of G of perod p?
In either case by the first part of the proof x € P and so by Theorem
12 G=P,OP® @S P, []

ProBLEM 1211 Express the cychc group of order 24 in the
form given by Theorem 12 1 also the cyclic group of order 30

DEFINITION 12 1 A firate vbelian group G has a basts =3 a

das L, €EGIVXEGIx X x, € Z 0=y < period
of a Dx=xa+xa+ + x.0, and this representation is
unique The seta a, ap ts called tbasis of G

THEOREM 122 A finute abelian group G has a basis 1if and
only if G s the direct sum of cyclic groups

ProBLEM 122 Prove Theorem 17 7

PrROBLEM 123 Find bases for the ibelin groups of Problem
121

THrorem 123 A fimite abelian group G 1s the direct sum of
cyche groups

Proor Stnce by Theorem 12 |1 every fimite abelian group 1s
the direct sum of subgroups of prime power order if we can prove the
present theorem for abelian groups of order p* we have the theorem
established for all fimte abehan groups

So let G be of order p* where p1s a pnime let p be the perod
of an element of greatest period in G We shall prove the theorem by
1nduction on g

Furst tet 8— 1 1¢e the period of every nonneutral element of G
15 p Let @, be any element € G « # 0 In case the cyclic group
generated by @, 15 G we are through 1f not let ¢, € G and be such
that a, 15 not 1n the cyclic group generated by @, Then the set of ele
ments Xa; + oy v—0 1 p~1>—-01 p—1areall dis
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tinct, since if two such were equal, say xa, + ya, = wa, + va,, then
(x —u)a; = (v — y)as, and so, since p is a prime, we should have a,
in the subgroup generated by «; unless x = u, y = v. If we have now
exhausted G, then G is the direct sum of the cyclic subgroups gen-
erated by a; and a,. If not, the process continues. It must terminate,
since G is of finite order, and when it does, we have G expressed as
the direct sum of a finite number of cyclic groups of order p.

Now, suppose the theorem true for all abelian groups in which
the element of highest period is p?, where y < $, and let G be an
abelian group in which the highest period of an element is p°. Then
let H be the set of all element pa, where ¢ € G. Then H is a subgroup
of G since if ¢ =pa, d=pb, c+d=p(a+ b). Now the highest
petiod of an element of H is p~!, and so by the induction hypothesis
and Theorem 12.2, H has a basis a,', a,, . . ., a,’ whose elements
have periods n,',n.’,...,n,, respectively, which are, of course,
powers of p. Since every element of H is of the form pa, 3a, € G
a,’ =pa,1=1,2,...,1 and the period of a,is pn,” = n,.

We shall now use the a, just obtained to get a basis of G. The
mny -+, elements of G, xya + xea,+ -+ -+ xa,, 2, =0,1,..., 1
— 1, are all distinct, for if two such were equal, say x,a, + - * - + x,a,
=ya,+ -+ yu, then we should have (x;—yp)a;+---+
(v, =y)a,.= 0 and not all x, — y, zero. Now, not all the x,— y, are
divisible by p, since if they were, we could factor it out and include it
with each aq; geting (\, — y)a," + - - -+ + (1, — y.)a,' = 0, impossible
since the ;' form a basis of H. So upon multiplying by p [by the last
remark for some i, n,[p,(x, —»,)], and we get the last equation any-
way, which is impossible. Therefore, the elements are distinct.

Thus the ay,. . ., a, generate an abelian group K of order nn,

- 1y, Which is a subgroup of G. If K is a proper subgroup of G, there
exists an element » € G 2 b € K. By hypothesis, pb=c¢ € H and
$0 —c &€ H. Therefore, —c=wa," +-- -+ wea,’ =pQua,+ - - -
+ 1,a,) and so—c¢ = pd, where d = wya, + - + - + u,a,. Consider b + d.
Now 17'(1) +d)=pb+pd=c—c=0,and so b+ d = a,., is of period
P an.d Is not in K. If we add a,,, to the basis elements «;.. . ., a, we
obtain a subgroup of G which contains b. If this does not exhaust G,
the process can be continued, and since G is of finite order, it must
teiminate after a finite number of steps. We then get a basis in which

thc'ﬁm r elements have periods greater than p and the others all have
period p.
]

ProsiLEM 12,4, Find all abelian groups of order (a) 32, (b) 81.
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CoroLLary 12] A finite abehian group has a basts

DeriNmmioN 122 The periods of the basis elements of a set
of basis elements whose penods are powers of pnmes of a fimte
abellan group G are called the im arrants of G

We might say, invanants with respect to a particular basis but
by the next theorem this 1s unnecessary

THeorem 124 The invarants of a finite abelian group G are
dependent of the choice of basts efements

Proor  We nced only prove the theorem for groups whose
orders are powers of a pnme p

leta, a, and by b, be two bases with periods m,
m, and n, n, respectively We may suppose them to be numbered
so the m, = m, = =moand ny, =0, = = n, All these num

bers are of course powers of the pnme p Now let my be the first
which 1s not equal to n  For defimteness suppose that ny > my The
myth ples of all the el ts of G form a sub, p # which has
as a basis the mth tes of the el of any the el ts of
any basis of G This subgroupis of course wndependent of the choice
of basis By using the above bases of G we get the bases of H as
nay may may  and mby by myb. « = L From the
first basis the order of # 1s

myoom my
meomy ER

and from the second basis we can conclude that the ovder 15

mom o m
wome m,

But this last number 1s greater than the first We have 1 contradiction
and so no such ny exsts »

THEOREM 125 Two abeliin groups with the same mvanants
are 1somorphic

THEOREM 12 6 For each set of powers of primes ny, #;
n, there exists an abelian group with these as mvariants

PrROBLEM {25 Prove the first statement in the proof of The
orem 124

PROBLEM 126 Prove Theorem 12 5
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ProBLEM 12.7. Describe all abelian groups of order 108 in
terms of their invariants.

ProBLEM 12.8. Prove that an abelian group is cyclic if and only
if its invariants are relatively prime in pairs.

PrOBLEM 12.9.  Find the group of automorphisms of the abelian
group of order 9 and invariants 3, 3; of order 27 and invarnants 3, 3, 3.

13. AUTOMORPHISMS AND ENDOMORPHISMS OF
THE FOUR-GROUP, D,

Automorplisms of Dy We shall write D, as an additive group,
ie., D,={0,a,b,a+ b}, where 2a=0,2b=10. Its automorphisms
are (in each case 0 <> 0, and 1s omitted from the listings)

L a<aqa a: a<a B: a<>b
beb bea+b bea
a+beoa+b a+b<b a+bea+b
v a<b oA a<a+b 5 a<>a+b
bea+b b<a b<b
a+bea at+beb at+b<ea
1t 1s easy to establish that @’ = B2 =8> == ..
ProBLEM 13.1.  Show that the above group of automorphisms 1s

1somorphic to S,.

Other endomorphisms of D,. If a group G' is homomorphic to
a group, G, then there exists an invariant subgroup H of G which is
mapped onto ¢’, the neutral element of G' and G/H is isomorphic to
G'. Conversely, if H 1s any mvariant subgioup of G, then G is homo-
morphic to G/H. (For example, the canonical homomorphism pro-
vides one such homomoiphism between G and G/H, but there may be
others.) Thus every homomorphic image of G can be obtained by con-
sidering G/H for every invariant subgroup H of G. Thus every endo-
fnorphlsm of G can be obtained by finding first all the homomorphic
images of G, i.e., all quotient groups G/H, next by finding subgroups,
if any, of G which are isomoiphic to each G/H, and, lastly, for a
pafticular subgroup and a particular quotient group, finding all isomor-
phisms between them. (This, of course, can be done by finding all
automorphisms of the subgroup.)

There are five subgroups of D, (1) D, itself, (2) {0}, (3) H,

={0.a}. (4) H,={0,b}. (5) Hy={0,a + b}. All are invariant.
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{1) D4/Dy1s a cyche group of order | There exists exactly one
such subgroup 1n D, namely {0} So we get one endomorphism

o u—0 b0 a+b—0

(2) DJ{0} 1s 1somorphic to D, D, has only one subgroup iso
morphte to D, but this subgroup has six automorphisms So we get
here the previously considered six automorphisms which of course
are endomorphisms

(3) DyH 15 a cyche group of order 2 D, has three subgroups
which are cyclic groups of order 2 but each one has only the 1dentity
wtomorphism Thus we hive the three following endomorphisms
(the only homomorphism of D, onto D,/H, 1s the cnontcal homo
morphism)

€ a0 14 a->0 n a—0
b—a b—bh b—a+h
at+bh—a atb—h atb—sat+h

(4y DyH  this case 1s exactly like ¢ ise (3) and we get the endo
morphisms

[ a—a « a—b v a—a+b
b0 b0 b—0
at+b-a a+tb—b at+boatb

(%) DJH, this case 1s ilso hke case (3) and we get the endo
morphisms

“ a—a v a—=b ¢ a—a+h
b—a b—b boa+b
a+b—0 a+tb—0 a+b—0

Thus there ire sixteen endomorphisms of the 4 group of which
s1x are automorphisms

ProBLEM 132 For each of the tbove endomorphisms o find
the smatlest positive integer n 3 o” — ¢ if one exists

PrOBLEM 13 3 Fmd alt endomorphinms of C  the cyclc
group of order 12 (Hint since C , 15 cyclic the image of a generator
determunes the endomorphisms )

PROBLEM 13 4 Find all endomorphisms of the abelian group
G of order 8 with invanants 2 4

THrEOREM 131 The set of all endomorphisms of a group G
and the wsual law of for form a
of the semigroup of all mappings of G nto 1tself




Composition Series 89

DeFINITION 13.1.  If « and B are two endomorphisms of an
additive abelian group G, then « + B is the mapping of G into itself
determined by: Vx € G,a(a+ B) = (aa) + (18).

TheoREM 13.2.  The set of all endomorphisms of an additive
abelian group G and the addition of Definition 13.1 form an additive
abelian group.

PROBLEM 13.5. Prove Theorem 13.1. (Remember that here
G is not necessarily abelian.)

ProBLEM 13.6. Prove Theorem 13.2.

PrROBLEM 13.7. Analyze and describe the additive group of
the endomorphisms of D,.

ProsLEM 13.8. Show that the additive group of endomor-
phisms of the group of Problem 13.3 is cyclic. (Hint: find an endo-
morphism of additive period 12.)

ProBLEM 13.9. Do as in Problem 13.7 for the group of Problem
13.4.

14. COMPOSITION SERIES

DerinvitioN 4.1, H is a maximal invariant subgioup of a
group, G <

(1) H is an invariant subgroup of G,

(2) H # G,

{3) K 1s an mvariant subgroup of G, K # H, K D H=K=(.

ProBLEM 14.1.  Prove that G/H is simple if and only if H is a
maximal invariant subgroup of G, G # H.

ProsLEM 14.2.  Find two distinct maximal invariant subgroups
of the cyclic group of order 24: of Dy: of the cyclic group of order 60.

THeorEM 14.1. M, N are maximal invariant subgroups of a

gioup G. M #N. D=M N N=G(M is isomorphic to N/D and
G/N 1s 1somorphic to M/D.

Proor: By Theorem 8.2, M IO N is a subgroup of G. If x = m
Onis any element of MO N, then Vg € G, ¢ O (mDn) O g
=@'OmOe)O(e'0On0g)=m O n,. where my € M and
n € ‘N. since M. N are invariant. Therefore, M [J N is invariant and
contains A and N. Hence, since M. N eachis maximal, M O N =G.

Now the theorem follows from Theorem 4.4 by taking first

H=M.L=N and then taking H =N, L= M. n
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ProeLEM 143 Apply Theorem 14 1 to the groups of Problem
142

DeriNiTION 142 Let {#}, +=0,1, ,n+1 be a fime
sequence of subgroups of G, a group, with the following properties
(1) Ho=G, H,u = {e}, where ¢ 15 the ncutral element of G,

(2} H, s simple,

(3) Hy,, 1s a maximal mvanant subgroup of #,, 1 =0,1, o
Then and only then, the sequence G, Hy, H, JHu oy 1s acom-
position series of the group G (also called a senes of composttion) The
quotient groups

G H, Hoy Hy

Hy H, CH, e

are called a set of prume factor groups of G and their orders, the
factors of compasition of G

TheoreM 142 A group of fimite order has a composttion
senes

PropLEM 144 Prove Theorem 142

ProBLFM 145 Give composition senes for (a) Dy, (b) Ceo
(¢) S5 (d) S, (e) §, (F) D, Where possible give at least two different
senies

ProsLLM 14 6 Give an example of a group of mfinite order
which does not have a composition series

Tueorem 143 (Jordan-Holder) For any two composition
senes of a finite group G the prime factor groups are 1somorpbic in
some order and the factors of composition are the same

Proor  The theorem 15 obviously true for any simple group
and so 1t 1s true for any group of prime order We shall proceed by
mduction on the number of prime factors n the arder of G Since tt1s
true if the order 1s prime we shnll suppose 1t true for alt groups whose
orders have fewer than # pnime factors (not necessanly distinct) Now
let the order of G have n prime factors and let G M, M, M.,
{e} and G, N;, N,, N,, {e} be two composition senes of G

If M, =N, the theorem then follows by induction hypothests
Solet My » Ny andlet M, N N, =D,

Then by Theorem 14 1, G/M, 1s 1somorphic to N,/D,, and GIN;
1s 1somorphic to M,/D, By Problem 14 1 G/M, and G/N, are simple,
and since N,/D, and M,/D, are 1somorphic to them again by Problem
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14.1, D, is a maximal invariant subgroup of both M; and N,. Now let
Dy, Ds, . .., Dy, {e} be a composition series for Dy. Then M, has the
two composition series My, M,, . . ., M,, {e} and M, Dy, ..., D, {e},
and by induction hypothesis, the corresponding prime factor groups
are isomorphic in some order. Therefore,

G M 1 M, G M My D
o er " {e}

are 1somorphic in some order. Similarly,
G N] N§ G Nl Dt

NoN T MNS N  Ted
are isomorphic in some order. Now since G/M, is 1somorphic to
N,/D, and G/N, is 1somorphic to M,/D,, 1t is obvious that

G My Dy G N D

Ml 7 e } Ny D777 {e}

are 1somorphic tn some order. Therefore, by transitivity of isomor-
phism,

G M, M, G N Ny N,

MMy e 7 {e}
are isomorphic in some order. Lastly, since isomorphlc groups have
the same order, the factors of composition must be the same. n

DcriniTION 14.3. A group G is solvable if and only if the
prime factor groups of G are of prime order.

THEOREM 14.4. A, is solvable if n=3,4. A, is not solvable if
n =S,

ProBLEM 14.7.  Prove Theorem 14.4. (Hint: use Theorem
11.7)

ProBLCm 14.8.  Verify Theotem 14.3 for the groups of Prob-
lems 14.2 and 14.5.

ProBLEM 14.9.  Prove that a finite abelian group is solvable.

PROBLEM 14.10.  Prove that D,, and Q. are solvable.



Chapter 4: Systems with more than one

Law of Composition

In the last chapter we considered primanly systems 1n which one law
of composition was present These systems were groups and sem
groups 1n the first three chapters there have been instances of systems
in which more than one law of composition was defined N, Z the
set of endomorphisms of an additive abelian group We now consider
y such more systems Always one law will

be internal and of the other laws one or more may be tnternal or
external {(which we define presently) or we may have some internal
and some external We shall however always have some relations
between the laws One of the most important such relations 1s the dis-
inbutive property miven by Defimtion S 3 of Chapter 1

The ficst such system we consider ts a ning «nd we also consider
certain spectal kinds of nngs such as integral domuins division fings
and fields In this connection we develop the rational numbers which
histonically were the prototype of the concept of field just as the n
tegers Z were the prototype of the concept of the ntegral domain
Then we add for the first ime an external law of composition to get
groups with operators Continuing thus we get to R modules and
spend considerable time on them and on a special case of them called
vector spaces This 1s 1n partial preparation for the matertal of Chap
ter 7

The most comphcated system we consider 1s that of an algebra
and 1n connection with it we briefly drop the assocrative law

1 RINGS, FIELDS INTEGRAL DOMAINS

DeFINITION | | A ring R s an additive abehan group and a
second law of internal composition (which we shall wnite as muluplt
cation and almost always omit the dot of multiphcation) such that R
and the second law form a semigroup and the right and left distributive
laws of multiphcation with respect to addition both hold (The second
law of internal composition need not be distiact from the first }

92
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As we did in the last chapter in considering additive abelian
groups, we shall write the neutral element of addition as 0, and call it
zero, and the neutral element of multiplication, if there is one, as |
and call it the identity element. Inverses with respect to addition and
multiplication will be written, respectively, as —a, a, ! (left inverse),
ag~" (right inverse), if, of course, these latter exist.

Occasionally, one finds in the definition of a ring, the condition
that the ring must have at least two elements, or that the two laws of
composition be distinct. (This, by Definition 3.2 of Chapter 1, implies
the existence of at least two elements.)

TueOREM 1.1.  The following systems (with two internal laws
of composition previously defined in each) are rings:

(1) the rational integers Z,

(2) the residue classes modulo m (an integer), Z,,,

(3) the endomorphisms of an additive abelian group G.

Proor: The only conditions remaining to be proved are the
distributive laws in (3). These we prove as follows: Vx € G,
¥ ..y endomorphisms of G, we have x[(a + 8)y] = [(xa) + (18)]
Y= (xa)y + (Qa)y =a(ay) +a(By) =x(af + ay) = (a+ B)y=ay
+By. and x[y(a+ B)] = (xy)(a+B) = (xy)a+ (xy)8=x(ya) +
AMyB) =alya+yB) = yla+ B) =ya+yB. n

In addition to those properties of elements of a ring, which hold
because of the properties of elements of a group or semigroup, there
are some very important properties which involve both addition and
multiplication. Several of these are included in the following theorem.

THEoREM 1.2.  Let R be a ring. Then

(HDVxe R, 0-a=x-0=0,

Q) Y,y € R, (—)y=x(—y) =—(xy).

(3) Va,y € R, (—x)(—y) =xy,

@ VYneZ* Vx €R, (—a)'=x"if nis even, (—x)"=—a"if
n is odd.

Proor: (1) x=21+0,2*=x(x+0) =212+ -0, and so by the
cancellation law of addition, A - 0= 0. Similarly, 0 - » =0.

Q) (F)y+ay=(—x+x)ry=0-y=0=> (—x)y = —(ay): simi-
larly, a(=y) =—(ay).

(3) and (4) are easily proved from the above [induction is needed

in (4)]. and so are left to the reader. -

DeriniTion 1.2, If there exists a positive rational integer
m 3 ma =0 (m here is, of course, an additive exponent),Va € R.a
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ring then the smallest such positive integer m 1s called the character-
wstee of the ring R 1f no such positive integer exists then R s sad to
be of charactertstic zero (sometimes of charactensttc infimity) (The
expression ‘of finte characteristic™ ts somettmes used to mean that
the ning 1s not of characteristic zero }

Pronauem 11 Prove the statement 1n parentheses immediately
preceding the statement of Theorem 1 |

Prosiem |2 Justify each step 1n the part of the proof grven of
Theorem | 1

ProBLEM § 3 Descnibe the nng of endomorphisms of the addi-
tive 4 group the cychic group of order 12

Pronien 14 Find the ning of endomorphisms of the additive
cyclic group of order p where p1s a prime Show that 1t 1s 1somorphic
to Z,, for some m

Propirm 15 Find the vy of endomorphisis of the additve
group of Z
ProBLEM | 6  Gave a ning of each posstble charactenistic

ProBLEM | 7 Show that if for any addiive abelan group
the product of every parr of elements ts defined as zero the resuling
system is a ring (Thts 15 sometimes called a zcro ring )

DrriNiTION 13 @ # 0 a € R anng a1s aleft (right) divisor
of eroe>TbER b#0 Da b=0 (b a=0) «1sa regular
element of amng Re>a # 0 a € R a5 not a divisor of zero

Sometimes divisors of zero as defined above are called proper
divisors of zero

THEOREM 1 3 Let @« € R a nng The cancellation laws of
multiphcation hold for @ & a 1s a regular element

ProBLEM | 8 Prove Theorem | 3

ProsLEM 19 Prove that 2 umt (cf Defimition 16 2 of Chapter
2)1s regular

ProsLEM | 10 Find two fings in which all nonzero elements
are regular

ProBLEM 1 I1  Find which of the rings so far considered con
tain  (a) identity elements, (b) units (c) divisors of zero
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ProBLEM 1.12. Prove in a ring R of finite characteristic and
with an identity element, that the additive period of the identity ele-
ment is the characteristic of the ring.

DEeFINITION 1.4. S is a subring of aring R &
() § C R,

(2) (S, +)is asubgroup of (R, +),

(3) (S, -)is asubsemigroup of (R, ).

DEFINITION 1.5. Two elements of a ring R are permutable if
and only if they are permutable under multiplication. A ring R is com-
mutative if and only if multiplication in R is commutative.

ProBLEM 1.13. Show that every ring except one particular
ring (and all others isomorphic to it) has at least two subrings.

ProBLEM 1.14.  Prove that the set C of all elements of a ring
R which are permutable with all elements of R is a subring of R.

There are certain kinds of rings in which the multiplicative semi-
group has further properties. Some of these we define now.

DEFINITION 1.6.  An integral domain (also called a domain of
integrity) is a commutative ring / with an identity element # 0, in
which all nonzero elements are regular.

A division ring is a ring D in which the nonzero elements form a
group. (This is sometimes called a field, or a sfield.)

A field is a commutative division ring. (When a division ring is
called a field, this is called a commutative field.)

ProBLEM 1.15. Prove that a field is an integral domain.

ProBLEM 1.16. Prove that Z,, is a field if and only if m is a
prime.

ProsLEM 1.17.  Find which rings considered so far are integral
domains and which are fields.

ProsLEM 1.18.  Prove that a finite integral domain is a field.

DermniTioN 1.7.  The ring product of two rings R and S is the
set product R X S with addition defined as in the group product of the
additive groups of the rings, and multiplication defined as in the semi-
group product of the muitiplicative semigroups of the rings.

THEORLM 1.4,  The ring product of two rings is a ring.

ProBLEM 1.19. Prove Theorem 1.4.
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ProsLrm 120 Find an example of a ring product of two fields
which 1s not a field (Hint Yook for divisors of zero) Then prove that
the ning product of two fields 1s never a field

Since we hnow from Theorem 12 8 of Chapter 2 that a commu
tative sermgroup in which the cancellation Jaw holds for every element
can be imbedded 1n & group, the question naturally anses as to whether
an tntegral domarn can be smbedded tn a field If we omit commuta
nvity but heep all other properties the ring cannot necessanly be
imbedded n a dwision ring [This was shown by A Malcev, Math
Ann Vol CXIll p 686 (1936) 1 However for an integral domain,
1t 15 posstble Frrst of all we make clear what 1s meant by having one
ning imbedded m another For this we generahze Defimtions 11 1 and
112 of Chapter 2 Presenily we shall give generahzations of these
two defimitions so at present we shall merely say that two nings, R
and S, are isomorphic 1f and only f there exists a 1~1 mapping a of
R onto 3 such that @ 1s an isomorphusm of the additeve groups and an
1somorphism of the multiphicative semigroups Then the nng R s
wmbedded 10 the ring 7 if and only if there exists a subring S of T and
anisomorphsm o of R onto § In general of course there may be
more than one such 1somorphism between R and § This grves us an
opportumity when present to select the one best suited to our pur
poses Also there may be more thin one subnng of 7 which is 1somor-
phic to R Again we may be able to choose the one we want

THEOREM 1 5 1 1s an integral domain =* 3 a field F 1 which
115 imbedded

PrOOF Much of the proof s similar to the developments 1n
Chapter 2 beginning with Theorem 12 7
Let/ be ! with O removed andletA =7 x 7 We define addittion
and multiphcation m & as foltows (ay, @) + (b, by) = (@1bs + by,
abs) (@, @) (b; b)) = (b, azb;} We leave to the reader the
simple venfication that X and each of these laws form a commutative
semigroup and that muluphcation 1s distnbutive with respect to addi
tion, as well as the venfication that the relation R, defined by (a, a»)
Riby, by) <> aib, = ashy, 15 an equivalence relation compattble with
addttion and multiphcation as just defined in K Then by Theorem
12 1, and those following 1t 1n Chapter 2, we have A/R closed with
respect to each of the duced laws + and ~, that each of these laws
1s associalive and commutative, and that = 1s dlsmhuuve with respect
to+
Further, 1f we let C, ,, denote the equivalence class (with respect
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to R) containing (a,b), we have Ci.1 + Cuapan = C0 azt1 a1 a»
= Carap = Ciar.an + Ca,n 80 Cq, is a zero element: also Ciq,n
¥ Ceatn = Ceav—av.s» = Cio,n- Thus K/R is a commutative ring. Fur-
ther, Capy * Can=Cuw-1.6- 1= Cia.tn = Ca1,n “ Cprr S0 Cq,yp is an
identity element. Now C.p # 0> a # 0, and so if Ciq,p» # 0, then
Cuty - Cioov=Cu,1», and since Cy o € K/R, each element of K/R
which is not C.y, has an inverse. Therefore, K/R is a field.

Now it is immediate that the set of all C, ), ¥ x € [ is a subring
of K/R. We shall show that the mapping « defined by xa = C(4,y, is an
isomorphism of / onto this subring. 1t is clearly an onto mapping. If
Cir.p» = Cq.1)» then, by the definition of R, x - 1=1-y=x=y and
so a is 1-1. Now (x +y)a Catpn=Cu.n+ Cu. » = X+ ya. Also
(Ay)a=Ciuy1=Can - Ca,n= (xa) * (ya). Therefore, « is an iso-
morphism and so [ is imbedded in the field F = K/R. n

THEOREM 1.6.  Every field L containing the integral domain /
as a subring contains the field F of Theorem 1.5.

Proor: For the proof of this theorem it is sufficient to show
that every element of F is a quotient of two elements of /, since every
field containing / must contain all such quotients.

Now Cn= Cm,n-'_Cu,b) =Cu.n " Cov ' = Ciq,1»/Cq.1y, this
form being permitted since multiplication is commutative. n

DerINITION 1.8.  The field F= (I X I')/R of Theorems 1.5 and
1.6 is called the field of quotients of the integral domain I. If [ = Z, we
shall denote the field of quotients by Q, call it the field of rational
numbers, and call its elements, rational numbers.

ProBLEM 1.21.  Show that the field F of Theorems 1.5 and 1.6
is the smallest field containing /.

PROBLEM 1.22.  Show that any ring R can be imbedded in a ring
with an identity element. [Hint: consider Z X R, and define: (m, a)
+ (n,b) = (m+n,a+b). (m,a) - (n,b) = (nn, na + mb + ab).]

2. LAWS OF EXTERNAL COMPOSITION AND
GROUPS WITH OPERATORS

DEFINITION 2.1, A law of external composition between ele-
ments of a set €, frequently called the set of operators, and elements
of a set §. is a mapping of a part 4 of Q X S into §. If 4 = O X S, then

we say that the law is defined everywhere and S is closed with respect
to (or under) the law.
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ExampPLe 2 Let D=5 and § be a semgroup Then the
mapping (n §) = s 1s an external law of composition for § (n € N
SES)

TxampLe 22 tet =G 1 group and Q be any set of endo
morphisms of G Then (O g) =0 VO € 0 1s an externa) law
for G

Exameer 23 Let S — {a} and Q be iy set whatsoever Then
(@ a)—a { o € Qs an externil hw for §

1n Defintion 2 1 and in Example 23 the sets § and @ had no
properites except those d ded by Defi 21 In I
7 { and 2 2 the sets involved did have other properties namely ]aws
of mternal composition defined in them When we «dd conditions of
this kind we get various types of algebraic systems The first such
mvolves 1 taternal law ta § but none 1

DEFINITION 2 2 A set G 1 law of nternal composition O
and a law of external A with set of M forma
group with operators (or an M group) <=

(1} G O form a group

(2) G 1s closed with respect to & Af

B) fabEG YOEM (allh)AO=(aA0)O(hAOD)

For brevity we shall frequently refer to 1 group with operators by
the single letter denoting the set in which the internal law 1s defined

Since the symbol for the external law A 1s placed between ele
ments of sets which are usually different ao ambiguity can result from
omitting A and merely writing the elements adacent to each other We
shall henceforth usually do this and then condition (3) of Definition
22 m part becomes (¢ 0 5)0 = (¢0) O (b0)

When wereferto G as  the group G without operators  we shall
mean the group determined in condition (1) of Defimtion 22 When
we refer to subgroups normal subgroups etc of a group with oper
ators we mean that the sets in question are subgroups etc of the
group without operators We now introduce further terminology for
subsets peculiar to a group with operators

4

DEFINITION 2 3 Let G be a group with operators M

Anelementa € GisumangntforanoperatorQ € M <> d0=a

A subgroup H of G 1s a stable subgroup (also called admissible
oranMgroup)e>Vh e H YOEM hOEH

An operator ¢ € M 15 called a neutral operator =¥ a € G ae
—a
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From condition (3) of Definition 2.2 we see that every operator
of a group with operators provides an endomorphism of G as a group
without operators. Thus a group with operators may be regarded as
a group and a set of endomorphisms of the group. For example, we
may consider the 4-group and the endomorphisms designated in the
previous chapter by o.{, e. This is a group with operators and one
stable subgroup is H,, as an inspection of the endomorphisms con-
cerned immediately shows, while H, and H; are not stable subgroups.

ProBLEM 2.1. Using the 4-group as above and the endomor-
phisms, o, t, @, €, {, find the stable subgroups.

ProBLEM 2.2. Do the same as in Problem 2.1 using all endo-
morphisms.

ProsLEM 2.3. Find the stable subgroups of the additive cyclic
group of order 12 and all its endomorphisms.

ProBLEM 2.4. For the group with operators consisting of a
group G and all 1ts inner automorphisms, find all stable subgroups.

ProBLEM 2.5. For a ring R show that the additive group of R
and operators consisting of all elements of R with multiplication as
defined in R as the external law between operators and elements of
the additive group of R form a group with operators.

PrROBLEM 2.6. let R=Z in Problem 2.5, and find all stable
subgroups; do the same with R = Q.

PrROBLEM 2.7. Let G be an abelian group and M = Z, and let
the external law be (n.g) > g",Vn € Z,V g € G. Prove that the
resulting system is a group with operators. Find some stable subgroups.

ProBLEM 2.8. Let R be a commutative ring. Prove that the
additive group of the ring product R X R, with operators 1 € R and

external law r(ry, r.) = (114, rry) is a group with operators. Find some
stable subgroups.

ProsLLM 2.9.  For the system of Problem 2.8, let R be a field

F. Find some stable subgroups H with the additional property that
Vre F,r#0,rH=H.

ProBLEM 2.10.  Prove that Theorems 3.1 and 3.2 of Chapter 3

hold if, for “group” we substitute “‘group with operators” and for
subgroup,” “stable subgroup.”
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3 AL GEBRAIC 5)YSTEMS AND HOMOMORPHISMS

Stnce we have now considered both internit 1nd external laws of
composition defined on 1 set and since we have considered sets on
which two such Lwws are defined the reader can appreciate the desiwe
ability of some gener defintrons pertuning to such sets ind laws
So we now give these definitions

Dranimion 31 (Cf 41 of Chapter 2) Let A be a law of
external composition defined 1n 1 set § with operitors 2 and T be
a subset of § Then the restricion of A to T s the Jaw of external
composttion defined tn 7 by the restriction (cf Definition 3 4 of
Chapter 1) to 2 X T of the mupping determtring & 1n 7

DrsinTioN 32 (1) An algebrare svstem s 2 set S and one
or more 1 1ws of mietn 1 composiion defined S 1d no one or more
laws of external composttion defined between elements of a set or
several sets of opertors ind elements of § Further these laws may
be subyected to fulfiling cect un conditians (eg  COMMULAVILY AsSQ
citivity etc) and to satisfy cert un relittons between the laws (eg
distributivity)

() Two algebr uc systems with the s ime number of internal laws
the same number of external laws with 11 t mipping of the laws of
one system onto the Iaws of the other system such th u corresponding
Taws satisfy the same conditions and the same reliuons ire s ud to be
of the sanic species

€3) Two gebric systems of the same species are homologons
1f and only if the sets of operitors for corresponding ws of the two
systems we the same

(4] An tigebraic system T 15t subsystem of an algebruie system
Sifand only if (a) T C § (b) T 15 closed with respect to each law of
composttion (aternal and externl) of $ (¢} each law of compasition
of T 1s obtuned 1s a restrction to T of 1 Liw of composition of S

PRORLEM 3 | Certain subsets of the algebruc systems so
far considered have been given speciit names Determine which of
these are subsystems 1n wcordance with Definttron 3 2 (4)

DefiNiTION 3 3 Let {S,} « € A be 1 collectron of homo
logous algebraic systems Then therr product T,., S, 15 ther set
product (cf Definttion 4 2 of Chapter 1) with the following laws of
composition

(1) for each law of wnternal compossion (1 € A 1— 4
n we define 0 by
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{sadacs O {tataea = {52 Ot}
(2) for each law of external composition, A/, we define
O A Satac 1 ={O A setqen, i=1,. . ,n,a € A
for each operator O.

PrROBLEM 3.2. Show that semigroup product, group product,
and ring product are special cases of Definition 3.3.

ProBLEM 3.3. Prove that the product of homologous algebraic
systems is an algebraic system homologous to the given ones.

DeriniTION 3.4, Let S and S’ be two homologous algebraic
systems with laws 0,, A, and [0, 4, , respectively. Then a mapping
a of §into S’ is a homomorphism of § into §' &

() ;G s2)a= (s,0); (s200), Vi, and ¥V 50,5, € S

2) (OAS)a=0 A, (sa), Vi, Vs € S, and for each operator 0.

o is a homomorphism of S onto S’ if and only if « is a homomor-
phism of S into S’ and @ maps S onto S’. Then we say that S’ is homo-
morphic to S.

If « is, further, 1-1, « is an isomorphism of § onto S’, and so we
say that § and S’ are isomorphic.

If $=S5"', then if « is a homomorphism, we call it an endomor-
phism, and if « is an isomorphism, an automorphism.

An algebraic system S is imbedded in a homologous algebraic
system U < 3 a subsystem 7 of U € § and T are isomorphic.

The above definitions of course apply to groups with operators.
It should be noted that, according to Definition 3.4, the endomorphisms
of a group with operators are precisely those endomorphisms of the
group without operators which are permutable with all the endomor-
phisms of the group without operators which are operators.

ProBLEM 3.4. Find the endomorphisms of the group with
operators of Problem 2.1.

ProBLEM 3.5. Do the same as Problem 3.4, for the group of
Problem 2.3.

Naturally al} theorems about groups wnh operators hold for groups
without operators, since M of Definition 2 2 may be empty.

On the other hand, many. but not all theorems about groups with-
out operators generalize to groups with operators. One place where
it is necessary to clarify such generalization is in connection with quo-
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tient groups Let G be a group with operitors M and 1 a stable i
vanant subgroup of G We wish to have the quotient group G/H be
a group with operators To do this we must define A0 foralld € G/N
and for all O € M and the defimtion of it must make 1t an element of
GfH To define AO as might be suggested by the obvious generaliza

tion of Defimtion 3 1 of Chapter 3 (te to define 1t as the set of all
a0 for all @ € A) 1s unsatisfactory since even if A =H we may
have HO # M with that generalization (of course HO © H since H
ss stable) and so the compostte would not be an element of G/ To
avord this difficulty we define A® to be the coset B 2 aQ €8

Ya€ A By d (3) of Deft 22 and by Defi 34 this
mikes G/# a group with operators A

ProBLEM 36  Fill in the details of the proof of this last
statement

PrOBLEM 37  Take a stable subgroup of the group of Problem
21 and describe the quotient group corresponding to it

ProBLEM 38  Generalize Theorems 36 37 38 39 310
and 3 12 of Chapier 3 to groups with operators

4 MODULES

Now we consider groups with operators and start adding conditions
1o the set of operators and this wil) require some retations between
the vartous laws of composition present

DEFINITION 4 | Let R be a ning Then an additive abelian
group E with operators R 1s a left R module &

(DVYa BER VxEE (a+Blx—ar+fr

2) a(Br}) — (aB)x

1 {2)1s replaced by

) a(Bx) — (Ba)x

then E s & right R module

An R module E (either left or nght) (s warary 1f and only if R
has an identity element € which 1s 3 neutral operator 1€ Yx €
€x=x

if 11 15 clear from the context whether E 1s a night or a left R
module or if 1t doesnt matter then the simpler expression R
module wtll be used This will always be the case if R 1s commutative

1t should be noted in condition (1) of the above definttron that
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the + sign on the left denotes addition in R, while the + sign on the
right denotes addition in E. Also, in condition (2) we have multiplica-
tion of elements of R and multiplication between an element of R and
an element of E. No confusion should result from this. 1t should be
noted that an R-module involves four laws of composition.

ProBLEM 4.1. Prove that in an R-module E, (a) Va € R,
a-0=0, b)) VXEE 0-x=0,(c) VaER, VxEE, af—x)=
(~a)x = —(ax). Interpret the zeros and the minus signs carefully.

We now define a particular R-module which is of fundamental
importance.

DeriNniTION 4.2.  If R is a ring, then V,/*(r) is the additive group
of the ring product of n factors, all equal to R, with operator product
defined as r(r,re,. . oory) = (rr,1rey . . o rry), Yr € R.V,E(R) is
the same except that r(ry, re,. . ..0) = (Fr, refy . o o, 0yr). In x=
(risr2,. . .1, 1, is called the ith component of x. If R is commuta-
tive, or if from the context the meaning is clear, V,/ (R) or V,F(R) will
be denoted simply by V,(R).

THEOREM 4.1.  V,/(R), (V,(R)) is a left (right) R-module. If
R has an identity element, both V,/(R) and V,*(R) are unitary.

. DEFINITION 4.3.  E is a vector space over the field F& E is a
unitary F-module where F is a field.

DEerFINITION 4.4, A submodule (vector subspace) of an R-
module (vector space E over F) is a subsystem of E [cf. Definition
3.2(4)] which is an R-module (vector space over F).

ProBrLeEM 4.2.  Prove Theorem 4.1.

ProBLEM 4.3.  Show that V,(Z) is a Z-module, which is a sub-
set but not a submodule of V,(Q).

PROBLEM 4.4.  Show that if S is a subring of a ring R, then every
submodule of an R-module is an S-module.

. PrROBLEM 4.5.  Show that in a unitary R-module E. the mapping
/.\'_§ E. x— ox, where a is a unit of R, is an automorphism of the
additive group (without operators) E.

PROBLEM 4.6.  Show that in a vector space E over F. the map-

ping, ¥ 1 € E, A — ax is an automorphism of the additive group (with
operators) E, for every oo # 0, @ € F.
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ProBirM 47 Prove that of M A are two submodules of an
R module £ then M + N and A 1 N are submodules of £

Pronrem 4 8 Prove that every submodule of a vector space
E 15 1 subvector spice of £

The quotient module of an & module 15 2 special case of the
quotient group of 1 group with operators

The module product of R modules ts covered by Defintion 33
and Problem 3 % estabhshes that it 1s an R module If we have a
coltectton of R modules {E} + € 1 then the module product n
the ¢ e that each £ 1s the dditive group of R with R as the set of
operators (¢f Problem 25) ts denoted by R, of Ry" according 1s
operator muluplication 1s on the left or nght 1f @ ={1 " )
then R, HRe") 15 denoted more briefly by R,"{R; ) and comcides
of course with ¥V, ()1 *(R})

We now generiize Defimtion 72 of Chapter 3 to R modules

Driinmion 45 Let M A, be submodules of the £ module
E Then E 15 the dircct sum wnitten £ — M, @ M, «f and only 1f

(D M, N A, = {0}

€2y every element of E can be expressed umguely as ¢ + 3 where
xEM VE M,

Further we siy that the submodules Af, M, of E are supple
mentary &S E =M @M,

ProBLEM 4 9 Prove that if £ ts a umtiry R module so s
E[M where M is a submodule of E

PrOBLEM 4 10 Prove that every module quotient of a vector
Space ts a vector spice

PROBLEM 4 1} Let M be those elements of V,(Z) of the form
(0 b) YbEZ Show that M 1s a submodule of V,(Z) and that
Vo (Z}IM 1s 1isomorphic 1o Z

ProBLEM 4 12 Let M be the set of those elements of V5(Z)
oftheform (0 & ¢) Y b ¢ € Z 1nd let N be the set of those elements
of Va(Z) of the form (a 0 0) Y a € Z Show that A nd N are sub
modules of F4(Z) that ¥3(2)/M 1s1somorphic to N and that V4(Z)/N
ts 1somorphic to M

ProsiemM 4 13 Show that the submodules of Problem 412
are supplementary

ProBLEM 4 14 Show that in Z considered as a Z module the
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submodule consisting of the even integers does not have a supple-
mentary submodule.

THEOREM 4.2. Let M,, M, be submodules of the R-module E.
Then E= M, ® M, = E is isomorphic to the module product of
M, and M,.

THEOREM 4.3. If E= M, ® M,, then the mapping, ¥V x € M,,
1—> (the equivalence class of E with respect to M, containing x) is
an isomorphism between E/M, and M,.

ProBLEM 4.15. Prove Theorem 4.2.
ProBLEM 4.16.  Prove Theorem 4.3.

PrOBLEM 4.17. Generalize Definition 4.3 and Theorem 4.2
to a direct sum of n modules. Prove the latter.

We conclude this paragraph by stating a theorem whose proof is
immediate by induction and 1s left to the reader.

THeoreM 4.4.  Let {v},{m}.A=1,2,...,n be two finite
sequences of elements of an R-module E. Then

(D Ziay (e +y0) = Zfoyxa + 2=y s

() o =3 1ax,¥Ya € R.

5. LINEAR DEPENDENCE IN AN R-MODULE

DeFiNiTION 5.1, Let E be an R-module. Then x € E is a
linear combination with coefficients € R of elements of the set
ACE&®IAN € Rag €EA,h=1,2,...,n, 3 x=3_Ma,. The
A, are called the coefficients. The element x is, under these circum-
stances, said to be linearly dependent over R, on ay, a,, . . ., a,.

ExampLE 5.1.  Let E=V,.(Z), 4={(3,4), (-=3,7), (5,8)}.
Then (—3,—8) is a linear combination over Z of elements of 4 since
(=3.-8) =4(3,4) + (—3)(5,8) =4(3,4) + 0(—3,7) + (—3)(5, 8).

ExaMPLE 5.2. Let E=Z, considered as a Z-module. 4 =

{8,12}. Then 4 is a linear combination over Z of elements of A4 since
= (=4)(8) + (3)(12).

i ProBLEM 5.1.  Describe the set of all linear combinations in
Zof 3:0f 4,6: of 4, 5.

PROBLEM 5.2.  Prove that the set of all linear combinations of
{(1.0) and (0. 1) as elements of V.,(R) is V:(R) for any ring R which
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h1s an identity element

PrROBLEM 53 Prove that the set of ll Imear combtnations of
(3 4) wnd {4 5) s elements of Vo(Q) 15 $,(Q)

PronLem 54 Do Problem 53 1n Vo (Z)

PROBLEM § S Prove that the set of all hnear combinations of
(2 4) and (4 S} s elements of Ve(Z) 15 n1 1,(Z)

ProBLent 56 Generalize Problem 5210 § (R) where Risa
ring with an identity element

Turoreat 5 | Let A C L an R module The set M of all
hnear binat with n R of el ts of the set A 1s
1 submodule of £ 1e an R module 1et S be a subnng of R Then
the set N of all hnear combinations with coefficrents 1t S of elements
of A 1s 1n § module

PrOOF  This theorem follows immediately from Theorem
44 »

CorotLARY 51 As in Theorem S | let L be any submodule
of E contatung A Then L D Af

DeFiniTioN 852 let A C E i R module The submodule
of E generated by A s the smullest (<f Defimtion 1 ° of Chapter 3)
submodule of E contarmng A

CoROLLARY S7 If E 15 a umitary R module and 4 C E then
the submodule generated by A ts the module Af of Theorem 5 I and
each element 15 of the form ra, + + ra, where r € R and
mEAI—1

CoroLLary 53 {f E ts not t unitary R module and 4 C E
then the submodule generated by 4 contams properly the module M
of Theorem St and ewh element 15 of the form ra, + + nax
+may+ 4ttty Wherer ER A EA n €Z

PROBLEM 57  Describe the Z module penerated by the two

elements of Problem 55 the Z module 1n Z generated by 5 by 1
by 3 and by 5

PROBLEM 58  If R 15 the ring of even integers describe the
module generated by 4 by 8

DerFINITION 53 The elements of a set 4 of an R module £
are linearly independent over R & (£, ;M6 —0 N ER g, € 4=
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A=0fori=1,...,n). The set A is then called free. The elements
ay, Gy, . . ., ay € E are linearly dependent over R < A\, € R, with
some one or more A\, # 0 @ EL; \ja, = 0.

In a general R-module, there is an important distinction between
Definitions 5.1 and 5.3, for it is possible to have the elements of a set
linearly dependent without having any one of the elements expressible
as a linear combination of the others. For example, in Z considered as
a Z-module, 2 and 5 are linearly dependent since (5) -2+ (—2) -5
=0, but there is no element A € Z 3 5=A-2,norany p € Z 3 2
=pu + 5. However, the situation changes if the nonzero elements of
R have inverses.

THEOREM 5.2. Let E be a unitary D-module, where D is a
division ring, and let a,, a,, . . ., @, be a set of nonzero elements of E
which are linearly dependent. Then J at least one a, D a, is linearly
dependent on the others.

Proor: By Definition 5.3, 3\, € D, with some A\ #0 3
21":1 )\,al = (), Then }\Aak = —)\1(11 .= A]\_la;\_l - Ak.,..lak.{_l e
— Mt Now since ), # 0, and D is a division ring, A\, exists and so
ay = pay+ -t g @aoy + e @rer o @aa,, where w,=—N I

CoroLLARY 5.4. Under the conditions of Theorem 5.2, at least
two of the q, are linearly dependent on the others.

PROBLEM 5.9.  Prove Corollary 5.4.

ProBLEM 5.10. Prove that in any R-module if x is linearly
dependent on «j, ..., a,, then the elements 1, ay, .. ., a, are linearly
dependent, if R is not a zero-ring.

ProBLEM 5.11.  Determine which of the following sets of ele-
ments are linearly dependent:
(@) over Z, as elements of V4(Z); (i) (1,3,4,7), (—2,—6,—8,—14):
(i) (4, =2, —6, —10), (—6, 3, 9, —15); (i) (1, 3, 4, 7),
(4,-2,—6,10) (11,5,0,41).
(b) over Z, as elements of V3(Zg): (i) (1,2, 4), (2,4, 3): (i) (1,2,
4), (3,0,0): (iiD) (2,2,4).

.PROBLEM 5.12.  Show that the following elements of V,(Z)
are linearly independent: (1,3.4,7), (—2,—6,—8,—13).

’PROBLEM 5.13.  Show that in V,(R), where R is a ring with
an identity element. the elements e,, with the ith component 1, and
all other components zero, are linearly independent.
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DeriniTioN 54 A basts of + umitary R module E s a free
set of elements which generte £ A umitary R module with 1 basis
15 called a free module

ProBLrm 5 14 Show that the e of Problem 5 13 form a basis
of V,(R)

THeorEM 53 Let R be a nng with 10 identity element Then
a umtary R module L has 1 finite basis & E 1s 1somorphic to some
Fa(R)

PRORIFM § 1S Prove Theorem $3 (Hint by hypothests
E has » fime bans sy a; a4, By Problem 514 ¢, 1=1
n form tbasis of ¥ ,(R) Prove that the mipping a, «> ¢, determines
n 1somorphism beiwzen E and ¥ ,{R) )

6 VECTOR SPACES

In this sectton we shill prove the important properties of linear
dependence 1nd independence 10 a4 vector space At the end of the
section are 1 number of exercises which re easy to prove using the
properties of linear dependence and which give important properties
of vector spaces

THEOREM & 1 u u, € E a vector space over F are
finearly independent => each subset of w, a, 18 free

ProoF Suppose u  were Itnearly dependent Then 3
N € F DI Ayu,—0with oot alt A, =0 Then let =0 for
1# A ;x,]—)\,ll‘or/=l 2 A Then =", g, —0 and
not all 1, — € -

THEOREM 6 2 If + € £ a vector spice over F 1s hnearly
dependent on ux € E but not on u, uy, 4 then 18
Imearly dependent on «, uyx ¢ v md the subspace generated by
“ #; 15 the same as the subspace generated by u, Hy g

Proor By hypothests we hwe v =34 An with A, #0
Then w, =ZE (=M M)+ A, v The result now follows from
Theorem 5 | u

THEOREM 63  In E a vector space over F let s, 1, be
lnearly independent and let +; € M the subspace generated by
I 1, which are limearly independent elements of £ Then there
existsasetu, u, ;, such that the subspace generated by the set
obtained from u, #a by replacing i by s, 1s M Thus s < n
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Proor: We proceed by induction. If s = I, the result follows
from Theorem 6.2 by renumbering the «’s if necessary.
Suppose that the theorem is true for (s — 1) v's and consider

s v's. The system arising by replacing suitable «’s by vi,...,vs—y
generates the same subspace as that generated by the «’s and v, belongs
to it; i.e., v, is linearly dependent on vy,...,vs_; and certain «’s. In
expressing that dependence the coefficient of at least one « must be
#0, since v,,...,v, are linearly independent. Thus Theorem 6.2
applies again and we have the desired result. By the method used it is
clear that s =< n. n

THEOREM 6.4.  If the vector space E over F has a finite basis
containing n elements, then every basis of E has n elements.

Proor: Let B={uy,...,u,} and C={y;,...,yn} be two
bases for E. Since the elements of C generate E and the elements of
B are hnearly independent, by Theorem 6.3, n < m. Applying the same
reasoning with B and C interchanged we have m < n. Therefore,

m=n. |

This last theorem justifies the next definition.

DEFINITION 6.1.  If the vector space E over the field F has a
finite basis, the number of elements in that basis is called the dimension
of E over F,and is denoted by dim E (unless several fields are involved,
then dim , E).

ProOBLEM 6.1.  Prove that in a vector space E of dimension n,
the elements of any set of n + 1 elements of E are linearly dependent.

PROBLEM 6.2. Find a basis for the vector subspace of V,(Q)
gcnerﬂted by (173’5Q8)’ (2,3379_l)’ (89 15’31913)'

PrROBLEM 6.3.  Prove that if a vector space E is of dimension n,
then every subspace of E is of dimension <n. (Warning: do not
attempt to apply Problem 6.1 immediately. Proceed step by step to
find a basis. Then apply Problem 6.1.)

PrROBLEM 6.4.  Prove that if M is a subspace of the vector space
E, then dim E=dim M © E= M.

PROBLEM 6.5.  Prove that every set of n linearly independent
elements of a vector space E of dimension # is a basis of E.

ProBLEM 6.6. If M, N are subspaces of the vector space E
S E=M®@& N, prove dim E = dim M + dim N. (Hint: take a basis of

-"11‘ ?nd a basis of N and show that the union of these bases is a basis
of £



110 Systems with mare than one I an of Composition

PronLEM 67 Prove that if two vector spaces of fintte dimen
ston are 1somorphtc, they have the same dimension (¢f Definstion 3 4)

PrRODLEM 6 B Prove that if two vector spaces over the same
field have the same dimension, they are 1somorphic

PrROBLEM 69 IF E= M+ N, M, N subspaces of the vector
space E, prove that dim E = dim M + dmN—dim (M N N)

PROBLEM 6 10 Prove that if M 15 a subspace of £, then dim
E/M =dim E—dim M

PROBLEM 6 11 Prove that if M 1s a subspace of the finite
dimensional vector space £ then 3 a subspace N 3 E=M BN
{cf Problem 4 14}

7 MODULES OF LINEAR COMBINATIONS
AND LINEAR RELATIONS

First we give a very general definton from the theory of sets

Deristion 7 4 1f A and B are any two sets then A% 15 the
set of all mappings of & into A

This 1s a special case of Defimuon 4 1 of Chapter 1inwhichl =B
and E,=4 Y. €1

ProsLEM 71 Show that our notation R¥ used in Section 4
ts agreement with this defimtion

We are Interested 1n the special case of Definition 7 1 in which the
set used as a base 15 a nng (What we do would apply to an additive
group but that does not interest us here )

DEriNITION 72 Let R be arning and T any set Then R'7 s the
set of all mippings of T into R tn which only a finite number of the
1mage elements for a piven mapping are different from zero, and for
which the following laws of composition hold if a and b are any two
such mappings we define their sum a+b by t(a+b) =ia+1h,
Y ¢ €T and define an external law between each element r € R
and each mapping a as ra by «(ra) = r{ta) ¥ « € T The mappinga
1s sometimes given by wnting the set of images under o as (8,), crand
using this notation the two just defined laws of composition may be
written as (1) (adier+ (B)ier= (¢}, where c,=a,+b, and
(2) r(a)ier= (ra), .y and these pive us R™ For Ry'", we use
(l)Tand ) rla).er=(ar).r IfR1s commutative we write merely

@
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TheoreM 7.1. If R has an identity element, then R," is a
unitary left R-module and Rg™ is a unitary right R-module.

DEFINITION 7.3. Let R be a ring with an identity element, and
let e, = (a,),.r denote the element of R™ 3 a, =1 and a,= 0 for
. # \. The set of all e,, A € T, is called a canonical basis of R™.

TueoreMm 7.2. The e,, as defined in Definition 7.3, form a
basis of R™.

ProBLEM 7.2. Prove Theorem 7.1.
ProBLEM 7.3. Prove Theorem 7.2.

ProBLEM 7.4. Explain why in Definition 7.2 the restriction is
made that only a finite number of the image elements should be not
Zero.

ProBLEM 7.5. Relate R® with V,(R).

For any set, T, t—>e¢, V1 € T, is a 1-1 mapping of T onto the
set of all ¢, Thus 1t 1s merely a change in notation to write ¢ for ¢, in
expressing elements of R™. This justifies the following definition.

DErINITION 7.4.  With ¢, replaced by ¢ in the expression of any
element of the set, the unitary R-module R™ is called the module of
formal linear combinations with coefficients in R of elements of T.

ProBLEM 7.6. Write in two ways the general expression for all
elements of ZY’ where L = {a.f,g,1}.

ProBLEM 7.7. Do the same as in Problem 7.6 for ZV*» where
M={1,2,3}, N={1,2}.

THrorem 7.3. Let(a,),.r be any nonempty set of elements of
a unitary R-module E. The submodule generated by the a, is iso-
morphic to R,'"™/N, where N is the submodule generated by all
elements (1,),.r € R 3 2 x,a,=0.

ProsLEm 7.8.  Prove Theorem 7.3. [Hint: consider the mapping

() == 1\, q, and apply the generalization of Theorem 4.1 of Chap-
ter 3.]

DeriniTiON 7.5.  For brevity, the module N of Theorem 7.3 is
called the module of linear relations between the a,.

8. ALGEBRAS

! 7 . N 1
We have thus far considered systems with one. two, and four laws of
composition; now we consider one with three.
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DrFINITION 8 ] A ring wuh operators s 2 nng R, a set of
clements (called operators) M. and a law of external composition
between elements of 3f and elements of R 3

(MVaEM VY xER axER,

RIVa €MV VER alv+y)=ar+a),

(MY aENM Ve ER atun)=(arh =tlmy)

As we have done with other systems, we shall usually denote a
ring with operators by the letter designating the set of elements

It should be noted that an operator of 2 ring with operators does
nat provide an endemorphism of the ring without aperators, although
1t does for the additive group of the ring

One example of a nng with operators 1s any nng R with the
operators the centrl of the ning

Most examples of interest however are algebras which we next
define

DerriNnerion 82 If R 15 o commutative nog with an identity
element then E 1 an afgebra over R E 1y a ing with operators R
and £ s a umtary R module with respect to the additionin €

ProBrem 81 Write out all the conditions relating to the laws
of composttion 1nt an algebra

The system defined in Defimtion 8 2 1s sometimes called a finear
assouain e aliebra over R contrast 1o

DrenmioNn 83 §f a vet F satishes alt the conditions of an
dlgebra except that muluphication m £ 15 not associative for at leist
three elements of £ then £ 1s called a (hnear) nonassociative algebra
10T not associahive)

EXamMPLE 8 1 (A exampte of an algebra ) A basis of V,(Q) s
a=(10) b=1(01) letusdefine the product of these basis elements
as follows « =« ab=ba="b b*=a Then « and # and this muln
phicanion form a cychic group of order 2 and so the assoctative law
holds for these two elements We shall prove below that if multiplica
tion of basis elements 1n an R module 1s associative then multiplication
of any three elements when defined as one would expect it to be 1s
assoclative (If we had not been able to observe that « and b formed a
group we could always have verified the associative law by considering
the eight cases present ) The elements of this algebra are all the ex
presstons of the form ra + sb for r s € @ We might ask if there are
divisors of zero present To find out fet us take the product (rya + 5,6}
(r2a ¥ 5,0} = {rry + 5:32) @+ trys2 + rys,) b and see when 1t 1s zero
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It will be zero if ry==1s, while r, =% s,. For example, (a+ b)
(a—b) =0.

ProBLEM 8.2. Consider the algebra derived from V.(Q)
when multiplication of a= (1,0), b = (0,1) is defined as: a*=a,
ab = ba = b, b* =—q. Show that it is a field.

ProsLEM 8.3. Construct a nonassociative algebra from V,(Q)
by defining products of basis elements suitably.

There are two relatively easy ways (one of which we used above)
by which we can construct algebras. One is to take a unitary R-module
with a basis and define an associative multiplication for the basis
elements. Then by Theorem 8.3 (below), the multiplication is asso-
ciative for all elements when we define a product of x = XL, £,¢, and
y=ZLme as xy=2", (., &mnee,), where {e} is the basis.
A second way is to take a system such as a group o1 a semigroup, in
which an associative multiplication 1s already defined and make it
into an R-module by taking the set of all formal linear combinations
with coefficients in a nng R of the elements of the system. Then, since
products of basis elements are already defined, we have merely to
define the product of two general elements as above and we have an
algebra. In both cases, the distributive law is easy to verify.

PROBLEM 8.4.  Show that in the algebras constructed as above,
the distributive laws hold.

PrROBLEM 8.5.  Use the first method to construct an algebra over
Z fiom V,(Z).

PrOBLEM 8.6.  Use the second method with the cyclic group
of order 3. Is 1t an integral domain?

PROBLEM 8.7. Do the same as in Problem 8.5 except that in

this case make the multiplication of basis elements nonassociative, if
possible.

‘ THEOREM 8.1.  In an additive abelian group G which is closed
}Vlﬂ} tespect to a multiplication (not necessarily associative) and which
Is distributive with respect to addition,

n n n n n n
(Z)E)=3(3ms)=-33 ) vrs ea.
=1 =1 =1 V=1 =1 M=l

THEOREM 8.2. Ina ring,

n n

Z al(z bJ 2 Cl.) = 2 2 E a,(b,c;\). etc.
=1 Lh=11=1)=1

=1 h=1
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PrortEM 88 Venfy Theorems 8 | and 8 2 for the case nn=2
PropLeM 89 Prove Theorems & 1 and 8 2 by induction

TueorFM 83 Let £ be an R module with a basis {e} and let
multiphication be defined so that £ 1s closed with respect to that mult
phcrtion and so that Vee € R Vi x we have alaa,) = (ad o, =a
{an,) Then that mulhp) 15 > the P of
basts elements 1s associative

Proor  Let x=21 Ly 3 =2 ma; 2= Z0 {iax be any
three elements of £ Then x(vz) =Zga(EnmEda) —Sfa
(EXglaa) =EETémfalaa)  swmtlarlly (n)z—SEZEml
(a ay)a, and from this the result the reltton <= follows immediately
The relation = ts obvious a

CoroLLARY 8 1 The products of the basis ¢lements determne
the algebra completely

TuroreM 84 1f S 1s an additive semigroup then R can be
made into an algebra by defining the products of the basis elements
as follows ¢, e —¢,  }§ has aneutral element O then the algebra
derived from R has an identity element ¢,

ProBLEM 8 10 Find tn algebr by using Theorem 8 4

ProBLEM 8 11 Prove Theorem 8 4

3 QUATERNIONS

A very tecesting and tmportant algebra over @ can be abtaed
from V,(Q2) For brevity we ntroduce letters for the basis elements
as follows ¢—(1000) +~(©100) ;=(0010) 2~(00
0 1) We define multiplic tion of basis elements s follows e2—e
ea=te=i g=je—j) eh=he—h y——p—h jh——h—~t hh——th
—J PP Rt —¢

Furst we note that e 15 an identity element and so an element of
the form ge where ¢ € Q may be replaced by ¢ Thus any element
can be umquely written 1n the form ry + ryf + rag + ph where ry 1y
rnREQ@

Next we observe th it the mapping of the basts elements and thetr
negatives onto the elements of the group Qy | < c a1 by
ab >k b* < —¢ b e —; ab® &> —; gh® e —} 1s an isomorphism
and 5o the multiplication we have defined for the basis efements s
associative
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ProBLEM 9.1.  Verify that the above mappingis anisomorphism.

DEerFINITION 9.1.  The algebra defined above is called the
algebra of rational quaternions. The elements themselves are rational
quaternions. If a«=a+ bi+ ¢j+ dh is an element of this algebra,
@=a— bi— c¢j—dk is called the conjugate of o. a@= a®> + b2+ ¢?
+ d* is called the norm of « and is denoted by N(«).

ProBLEM 9.2.  Verify the above product of « and @.

PrOBLEM 9.3.  Prove that if « # 0, 3 o™}, a quaternion, 3 q¢ ™!
= la = 1. (Hint: generalize from the method used in dealing with
complex numbers.)

PrOBLEM 9.4. Show by an example that an equation of the
second degree with rational coefficients can have more than two
distinct quaternions as solution. (In fact, infinitely many.)

THEOREM 9.1.  The algebra of rational quaternions is a non-
commutative division ring.

PrOBLEM 9.5. Prove Theorem 9.1.



Chapter 5 Polynomals, Factorization,
Ideals, and Extension of Fields

In thes chipter we consider several different but related topics First
of all we discuss polynomials ind potynom Ul functions defining each
cirefully ind making 1 crreful d stnction between them Then we
constder some spectal types of tategr il domuns and factonization in
them These we did not consider e rrlier since mny of the best illus
trat ons of them involve polynomials

Next we conmder wdedls which e for nnws to ginte an extent
wht inv irtant subgroups are for Lroups By using ide ls 1n polynom al
rings over fields we are able to et new fields with certun properties
which we desire one of which 1s thit tn the new field a polynomal
will fictor which would not in the onigin it field [n order to do this we
introduce cert un import int concepts about fields

Fmilly we consider the extension of isomorphisms between
fields Ttus 1s of tmmed ate importance w Chapter 6

! POLYNOMIALS

The reader probibly has hid some previous expertence with poly
nomials We now define them carefully

Let R be a ning with an wentty element and fet { be the set of
nonnegative rational integers By Theorem 7 1 of Chipter 4 R, 1sa
un tary left R module which we shall denote briefly by R~ The set of
the ¢, A E 1 as defined n Definton 7 3 of Chapter 4 form a basis
of R Since /15 an 1dditive sermgroup we can define an associattve
multiplication of the ¢, by ¢, ¢ =¢, From this relation 1t follows
immedately by induct on thate, —¢ ¥V € Z* If we denote e by
x wehave(,~x ¥n € Z* Thuswe now havenbasisfor B con
sisting of eq x x* and furthermore eox” —x"¢,=x" Lastly
since the set of all elements re; ¥ » € R 15 a ing 1somorphic to R
and since re,x =rx we may rveplace rep by r e by 1 the wdentity
element of R If we now cons der the module of all linear combimations

il6
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of e, 1,x%, . . . and define products as follows: if u=232L,&x7, v=
Srompv, then uv=Si,Shoémx'?, au=3i,(at)r, ¥ a € R,
and we have, by applying Theorem 8.3 of Chapter 4, defined a ring
which we shall denote by R[x]. (For x°, see Definition 15.1 of Chapter
2) If R is commutative, then R[x] is an algebra over R.

DerFINITION 1.1.  The ring R{x], is called the polynomial ring
in x over R, and if R is commutative, the polynomial algebra in x over
R. An element, f(x) =ay+ ax+ a: x>+ - -+ ax" = Z,a,xt €
R[\] is called a polynomial in the indeterminate x, the a, are called
the coefficients of f(1), a, is called the coefficient of x'; and if one or
more of the a, are #0, then the smallest integer n satisfying a, =0,
¥Yi>n, (such an integer exists by Definition 7.2 of Chapter 4) is
called the degree of f(x), (often denoted by deg f), with a,, the leading
coefficient. A polynomial whose leading coefficient is 1 is called monic.
If all 4, = 0, the polynomial is called the zero polynomial and does not
have a degree.

It should be noted that the original ring R is imbedded in R[x].

Sometimes it is convenient to use some letter other than x as the
indeterminate. If we wish to define R[y], for example, we need merely
go back in the above discussion and call ey, y.

Sometimes the degree of the zero polynomial is taken to be —
with the understanding that —e < « for each nonnegative a. This has
some advantages, such as in Theorem 1.4 below it is unnecessary to
give the alternatives r,(x) = 0 and r,(x) = 0, and also in Theorem 4.1

belmy, if we agree that 2= = 0, it is unnecessary to give the additional
condition that §(0) = 0.

THEOREM 1.1.  Let § be a subring of a ring R with an identity
element, Th.en the set of all linear combinations of 1, x, x%, . . ., with
coefficients in S is a subring of R{x], and will be denoted by S[a].

PrRoOF:  Apply Theorem 5.1 of Chapter 4. n

In the above theorem, the ring S need not have an identity. This
:nab{es us to consider polynomials over rings without identities since
any ring § can be imbedded in a ring with an identity element. This was

c"stablished 1n Problem 1.23 of Chapter 4 although late in this chapter
we shall obtain a better result.

PROBLEM |.1. Using in turn each of the two forms for the basis

e . . .
d‘:mems. find the sum and product of the following polynomials, their
Erees. and the degrees of the sum and product, as elements of Z[r]:
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{3,4 -2,0,0, ), (12,3,0,06, ) (° ° here means that all
following coeffictents are zero )

ProBtemM 12 Do the same as in Problem 1 1 for the followng
elements of Zy[v] (a) (1,3,5,0,0, ), (3,=5,0.0, ) (b) (4,3
0,0 ) (-2300 )

TheoRFM 12 f(x) = 2% ax' and  g(x) =3, bx' € R[x]
= f{0)plx) = S oxt, where ¢ = ah+ab v fab

Tueorem 13 fix)  gly) € RIx), flo) + gl = Alx),
ftag(n) = &v) = degd < degf+ deg g degh < max(degfidegeh
if 12 and & have degrees

COROLLARY | | If R has no divisors of zero thendegd = degf
+deg g

COROLLARY | 2 If R ts an integral domun then R[x] 1s an
integral domain

PROBLEM | 3 Prove Theorem ! 2 (by mduction)
Proprens 14 Prove Theorem 13

ProBLEM | § Give three examples in whrch the strict inequalt
ties hold 1n Theorem 1 3

PropLem 1 6 Prove Corollanes 1 1and 12

ProBiem 17 Prove thu the leading coefficient of f(x) 1s
regular g(x) # 0= deg f(x)g(v) = deg f(x) + deg glx)

The reader should observe 1 number of similanties between
polynomedl rings and Z The next theorem ts bke Theorem (7 | of
Chapter 2

THeoreM | 4 (Dwvision Algorithm) Let R be a ning with an
identity element and let a(x) b(x) € R[x] Further let deg b(x)
=120 and let b, be a unit of R Then 3 q,(x) r(x) g.{x) r(x)
€ Rx] 3 alx) = b(x)gx) + r,(x) a(x) = gu(x}b(x) + n(x)
where ri{x) =0 or deg r,(x) < deg b(x) and ry(x) = 0 or deg ra{x)
< deg b(x) Finally the q{x) and ri{x) 1=1 2 are umque

Proar We shall prove the existence of g,(1}) and r;(x) and
leave the rest 1o the reader

If a(x) = 0 then the theorem holds with g,(x) = r,(x) =0

The proof of the theorem 1s immediate if deg a(x) < deg b(x) for
then we take g{x) =0 and r{x) =a(x} So we shall suppose that
deg a(x) = deg b(x)
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If a(x) = a,, then we can take q,(x) = by'aq, 11(x) = 0.

Now let deg a(x) = 1; then a(x) = a,x + a, and b(x) = byx + by,
since deg b(x) is 1 or 0. If b, =0, take q,(x) = by 'a(x), r{x) =0
if b, # 0, take g;(x) = by, ay; ry(x) = ap— beb,~". Thus the theorem
holds if deg a(x) = 1.

Now suppose that the theorem holds for all a(x) of degree <
and let a(x) = GueX™' + a3 + - - Fa,, b(x) = byx"+ -+ by,
where b,, has an inverse in R. We may suppose, by an earlier remark,
that m < n+ 1. Consider hi(x) = a(x) — b(x)by  apx""". Then
h(x) is of degree n at most, and so by induction hypothe51s 4 q:(x) q; (x)
and 11(x) 3 h(x) = b(x)q:(x) + r;(x), where r(x) =0 or or deg 1 (x)
< deg b(x). Then a(x) = b(x) [by  aprix™™ + (1) ] + r1(x) = b(x)
au(x) + r(2), where ¢, (x) = by @y X + g1 (x), r1(2) =r;(x) and
r(x) =0ordegri(x) < deg b(x).

Therefore, the theorem follows by induction. We leave the proof
of the uniqueness as an exercise. n

CororLARY 1.3. If, in Theorem 1.4, R is a field, g1, g3, I'1, s
always exist if b(1) # 0, and g, = ¢, 1; =

ProBLEM 1.8. Prove the uniqueness (use Problem 1.7).

ProBLEM 1.9. Prove Theorem 1.4 for g.(x), r,(x) including
uniqueness.

ProBLEM 1.10. Find q(x), r(x) if a(x) =x*+ 2x* — 3x% + 5x
+Lb(a)=x'"-20+2,R=0.

ProBLEM 1.11. Do Problem 1.10 with R = Z,.
ProBLEM 1.12. Do Problem 1.10 with R = Z,,.

PrROBLEM 1.13.  For a(a) =x*+ (=3i+2k)x3+ (2 + 32 +
(? =i+ 4h)x+ (6i + 3h), b(x) = x? — 3ix + (2 — ), where the coeffi-
cients are rational quaternions, find q,(1), r1(x) and g,(x), rp(x).

ProBLEM 1.14.  Prove that Theorem 1.4 applies to Z[x] with

conclusion that Na(x) = b(1)q(x) + r(x), where N € Z. Can this
be generalized to any arbitrary ring?

2. POLYNOMIALS AND POLYNOMIAL FUNCTIONS

It i.s important to realize that a polynomial and a polynomiat function,
which we are about to define, are quite different. This section is de-
voted principally to considering the relations between them.
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DermniTion 21 Let flae) =3, ax' € R[x), and letc € R
Fiest, fo(c) =3 e, fule) = Zhyc'ay Secondly, the mapping ¢ —
Jale) e = fi(e)) of Rnto R s called the right tleft) poly nomual func
tton determined by the poly 1f(x) HR1s , these two
functions coincide and the mapping 1s called the polynomal function
determined by f(x) [n this case since no confusion can result we
usully denote the function by f{t)

‘The above 1s not completely standardized and some authors inter
change the definitions of fa(¢) and f; {¢)

PronLEM 2 1 Show that tn general the above mapping ¢ — f{c)
1s not 1 homomorphism of R

ProBLEM 22 For fix) = Y+ (1 —)x®+ kv + 2 where the
coefficients are rational quaternions find f; (5) fx(s)

ProBLEM 23 For fix) =1+ v g(x)=y—hix find h(x)—
Jixy g(x) Then show thut fa(y)  gels) # Na(y)

The property displayed i Problem 23 that fr{ ) gafc) # hale)
when fi(¥) = f(x)g(x) 15 lustrative of the difficulties which may arise
1f R s not commutative However we can establish one useful result
incase f{¢) =0 or gzlc) =0 For this we need the following

LemMMa  flx) =Zlgax’ () =ZLbx' € R[x] = hix)=
fix)g(x) = Iy al(To b,x)x! = T X(EP  xla) by

THEOREM 2 | Let R be a nng with an identity element let
¢ € R f(x) 4(x) € R[x] and let g(x) — fix)g(x}) Then ga(c) =0
=hp() =0 fil)) =0=I,0c} =0

PRrOOF By the above lemma lg(¢) — I s a(grle))c' =0
h{c) = Zlyclfi ()b =0 "

ProBLEM 24 Prove the lemma

PrOBLEM 25 Consider the statement of Theorem 21 for
£:(c) =0 and for fp{¢) =0

PROBLEM 26 Prove that R 1s commutative ¢ € R h(x) =
Sflxyglx) => h{c) = He)glo)

PROBLEM 2 7 Venfy Theorem 2 | for the polynomtal functions
of Problem 2 3 using ¢ =

THEOREM 22 (The Remainder Theorem) In applying The
orem | 4 to a(x) € R{x] and b(x) = v — ¢ where ¢ € R we have
rdx) = a,{c) and 1,{x) = az(c)
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ProOF: Since deg (x — c¢) =1, we have r,(x) =0 or deg r,(x)
=0. Hence, r,(x) € R fori=1,2. The rest follows by applying The-
orem 2.1 with g(x) =x — ¢ and then with f(x) = x—c. n

ProBLEM 2.8.  Apply Theorem 2.2 to the polynomial of Prob-
lem 2.2.

DeFINITION 2.2.  Let f(x) € R[x] and let S be a ring contain-
ing R as a subring. Then ¢ € S is aright (left) zero of f(x) & fa(c) =0
(fi.(c) =0). If § is commutative, we say merely a zero of f(x).

THEOREM 2.3.  Let f(x) € I[x], where [ is an integral domain.
Then ¢ € [ is a zero of f(x) = x — c|f(x).

DeriNiTION 2.3, Let f(x) € I{x], where I is an integral
domain. Then a € [ is a zero of f(x) of multiplicity (sometimes called
order)y m < (x — a)™| f(x) while {x — a)™"f f(x).

THEOREM 2.4. f(x) € I[x], where [ is an integral domain =
f(1) has at most n zeros if deg f(x) =n = 0.

It is important to observe that two different polynomials may
determine the same polynomial function. For example, let f(x) =
X4 224+ x and g{x) =x7 4 2x* 4 x>, considered as elements of
Z.{1]. Then the two polynomials are, of course, different, while the
functions determined by them are the same since f(0) = 0= g(0),
S =4=¢(1), f(2) =3=g(2), f(3) =3=1g(3), f(4) =0=g(4).
The next theorem gives a condition sufficient to insure that this cannot
happen.

THEOREM 2.5. If f(a), g(x) € I[x], where I is an integral
domain with infinitely many elements, then if the polynomial functions

dgtermined by f(1) and g(x) are equal for all x € I, the polynomials
S(x) and g(1) are equal.

CoroLLARY 2.1.  Under the conditions of Theorem 2.5, if

f(x) and g(x) are equal for n + 1 elements where deg f < n, degg < n,
then f= g,

PROBLEM 2.9.  Prove Theorems 2.3, 2.4, 2.5 and Corollary 2.1.

! DeErNITION 2.4, If f(x) = 22" ax* € R[x], then the deriva-
tive of f(x) is f' (1) =3I, ia,x*1.

ITHEOREM 2.6.  f(x), g(x) € R[x] = (flx)g(x)) =f(x)g"(x)
+/ W), (flx) +g(x))" =f"(x) + g"(x), (f(2(x))) =f(g(x))
£'(3). and deg ' (x) < deg f(x), if deg f(x) > 0 and if '(x) has a
degree. [If f(x) is given as in Definition 2.4, f(g(x)) = =L, a;(g(x)).]
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ProsLEM 2 10 Prove Theorem 2 6 (use only Definttion 2 4)

PROBLEM 2 11 Find a field F and a polynomial f{x) € F[x}
3 deg f'(x) < [degf(x) — 1]

TuroreM 27 Let f(x) € I[x]. ¢ € {, an integral domain
The element ¢ 1s a zero of f(x) of multiplicity m > 1=3x—c|f (x)

Proo¥ Let ¢ be a zero of order m Then by Definition 2 3 and
Defimtion 16 1 of Chapter 2, f(x) = (¥~ ¢)"¢(x), where ¢{x) €
1[ <], and by Theorem 2 3 and Defimtion 2 3, ¢(c) # 0 Then by The
orem 26 and Definitton 24, f (v) = m(x — )" (x) + (x— )"
& (0} = (v — )" '[md(x) + (x— )¢’ (v)], which, since m > 1, =
(x=c)mlf (x) = (x = O)lf (x) »

COROLLARY 22 If ¢ 1s a zero of multphcity m of f(x), then
€ 15 a zero of multipheity at least m — 1 of £ (x)

ProstEM 212 Apply Theorem 26 to find the multiple zero
of fix)=v'~3¢+3x—1

PrROBLEM 213 Find an exampte of a polynomtal such that the
words at least n the above corollary are necessary (Hint use
Problem 2 11)

3 GAUSSIAN SEMIGROUPS AND GAUSSIAN DOMAINS

We are now going to consider various factonization theorems first
n a generat t ily with multiplication as the Jaw of
composition as in Deﬁnmons 16 1 through 16 8 of Chapter 2 thenin
particutar for certain types of nngs One extremely important property
possessed by many rings (Z 15 one such) s that of hawving a umique (or
essentially umque) factorsization for each nonzero nonunit element
mnto a product of ireducible elements and inttmately connected with
this 1s the property of an srreducible element being a pnime One
simple example of a ring in which umque factortzation does not hold
1s R[x] where R 1s the division ning of rational quatermions here we
have 4+ 1= (x—)(x+1) = (v— ) x+s) = (x—A){x+4), and
1 each case the factors are obviously irreducible since they are of the
first degree Of course, in this case the ring 1s not commutative How

ever it 1s possible to give an example 1n a commutative ning in which
factorization 1s not unique

THeORFM 31 [f § 15 a commutative semigroup with a neutral
element and m which the cancellation law holds for every element,
then p € S, p1s a pnime = p 1s wreducible



G aussian Semigroups and G aussian Domains 123

ProoF: Let p=ab,a,b € S. Then by Definition 16.6 of
Chapter 2, since ab =1 - p, either p|a or p|b. Suppose for definite-
ness that pla. Then a=pc,c €S. So p=pch=>1=cb=>c, b
are units and so, since b is a unit (by Definition 16.5 of Chapter 2),
p is irreducible. n

In general, the converse of this theorem is not true. We have
already given an example of a noncommutative ting in which the
converse is not true, since {x — i) # (x —j), efc.

DeFINITION 3.1. A commutative multiplicative semigroup S
with a neutral element and in which the cancellation law holds for
each element is called Gaussian < every nonunit in § has an essen-
tially unique factorization (cf. Definition 18.1 of Chapter 2) as a
product of irreducible elements.

In a Gaussian semigroup the converse of Theorem 3.1 does hold.

THEOREM 3.2. S is a Gaussian semigroup, p € S, p irreducible
= p is prime.

Proor: Let plab, where a,b € §. Then dc € § 3 ab=pc.
Now ¢ = ¢, I1 p,, where e, is a unit of §, and p, is irreducible for each
L. Alsoa=¢, 1 g, b= e, 11, where ¢, ¢, are units in § and g,, r, are
irreducible. Therefore, e.e, Il g, IT r, = pe. II p, and so, since S 1s
Gaussian, p 1s an associate of some g; or some r,. In the former case,
pla, and in the latter, p|b. Therefore, p is a prime. )

THEOREM 3.3. § is a Gaussian semigroup, a,b € § = a and
b have a greatest common divisor.

CoroLLARY 3.1.  Any finite number of elements in a Gaussian
semigroup have a greatest common divisor.

ProBLEM 3.1.  Prove Theorem 3.4.
ProBLEM 3.2.  Prove Corollary 3.1.

. PRF)BLEM 3.3.  Prove that in F[x], where F is a field, all
ireducible elements are polynomials of degree n = 1. (Hint: show
all nonzero elements of F are units.)

DerINITION 3.2, f(x) € A[x], f(1) # 0, 4 is a Gaussian do-

{nain. Then f(x) is primitive & every g.c.d. of the coefficients of f{x)
1S a unit.

TH_EOREM 3.4, Let 4 be a Gaussian domain, and F its field
of quotients (cf. Definition 1.8 of Chapter 4). Let fi(1), f2(1) € A[x]
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be pnimitive Then £,(x), fz(x) are assoctates in F{x] & £(x), fulx)
are assocites in A[ ]

ProoF  Since fi(x) fi(x) are associates i F[x], 3 #0,
«€F D fi(x) =afy(x) Then a=dyd,™", where d;,d, € A Then
difi(x) = dy fulx) Thus d, divides all the coefficients of d,f;(x) and
so since fi(x) 1s pnmitive dy|d; Similarly, dy|d, Therefore, d, = die,
where e 15 a umt i A Therclore, f;(x) = efe(x) Therefore fi(x),
JS2{x) are assocites in A[x) "

TueoreM 35 (Gauss Lemma)  flx), g(x) € 4fx], 4 s
Gausstan f(x) g(x) are pnmitive = f(x)g(x) 15 prinutive

Proor  Let f(x) = Zloaiy  g(x) =Zilbx', flx)g(x)=
I x' and suppose that flx)g(x) 1s not primuttve Then A p € A,
p wreductble 3 pl¢; 1=0 1 n+m Since f{x) 1s primitive not
all ¢, are divisible by p Let @y be the first of the 4, not divisible by p
and similarly let b, be the first b; not divisible by p Now the coeffi
crent of ¥ s a by + apa by 1+ + ay by + Here p divides
all terms except the one wriiten first and so since by hypothesis
Pleksy plashy Hence by Theorem 3 2 play or plb; which s a contra
diction Therefore f(x)g(v) ts pnoutive -

THEOREM 36 f(x) € A[x] A1s Gaussian f(x) 1s irreducible
1n A{x) deg flx} > 0=>f(x} 1s wreductble in F{x] where I 1s the
field of quotients of A

ProBlem 34 Prove Theorem 37 ([Hint suppose f(x)=
& (x)¢»(x) 1 F[x] Then find common denominators for the coeffi
cients of ¢.(x) and ¢.(x) ]

THeoreM 37 (Easensten ) Let fixy =TI ax € Afx]
where 4 ts Gaussian and f(x) s pnmitive [f Japnimep € 4 3 pla;
Yi<n pla, p*la, then f(x) s rreducible in A[x]

PROBLEM 3 5 Prove Theorem 38 [Hint assume a factoriza
tion of f(x} and proceed 1n a manner sim:lar to the proof of Theorem
36]

PROBLEM 3 6 If fx) =2{,a;x' we define f(x+c) as the
polynomial obtaned by expandmg Zoai(x+¢)' Now prove that
if 115 an integral domain then f{x) € /[x] 1s wrreducible n /[x] <
Sflx+¢) is ireducible i f {x]

ProE1FM 37  Prove that the cyclotomic polynomial x? ! -+ x? ?
+ +x+ 1= (x*—1)/(x—1) p apositive rattonal prime Is 1frre
ducible in Z{x] (Hint replace x by x + 1 then use Problem 3 6)



Euclidean Domains 125

PROBLEM 3.8. Prove that if / is an integral domain, ¢,r € I,
clr,thenclr, Y n € Z*.

PROBLEM 3.9. Prove that if I is an integral domain, p a prime
in 1, p|r", then p|r.

ProBLEM 3.10. Prove that if 4 is a Gaussian domain, a, b,
¢ € A, a and ¢ are relatively prime, c|ab, then c|b.

THEOREM 3.8. Let A be a Gaussian domain and let F be its
field of quotients. Let f(x) € A[x],r/s € F,r,s be relatively prime,
and f(r/s) =0. Then, if f(x) =ao+ awx + -+ + a,x" is a primitive
polynomial, s|a, and r{a,.

CoROLLARY 3.2. If a, is a unit in A4, then all the zeros of f(x)
in R are in 4.

ProBLEM 3.11.  Prove Theorem 3.8 and its corollary.

ProBLEM 3.12.  Prove that the following polynomials are irre-
ducible in Z[x]: (@) x2—3, b) ¥+ x+3, () x*—2,(d) x* —x+ 2.
(Hint: if a polynomial of degree 2 or 3 is reducible, it must have a
linear factor.)

PROBLEM 3.13.  Give an example of a reducible polynomial of
degree 4 or higher, reducible in Z[1], but having no linear factor
in Z[x].

PROBLEM 3.14.  Prove that if p is a prime in Z, Aa € 0 2
a'=p,forn>1,n & N.

PROBLEM 3.15. Generalize the statement of Problem 3.14.

PrOBLEM 3.16.  Prove that the following polynomials are
reducible in Z[x]: (a) x* + 2x2 + 1, (b) x* + 2% + 1.

. PrROBLEM 3.17.  Find all irreducible polynomials of degree 2
n Z,[x]; find some such of degree 3.

ProBLEM 3.18. Do the same as in Problem 3.17 for Zz[x].

4. EUCLIDEAN DOMAINS

}Ve now consider a type of domain which we shall presently prove
1s Gaussian.

DhFlNlT.lON 4.1.  An integral domain I is a Euclidean domain
“* 1 a mapping & of I into the nonnegative integers such that (1) §(a)
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=0@a=0 (DVabel S(ab)=5(a)s(b) IVabE I b¥D
dg r €3 a—bg+r where 8(r) < 5(b)

Turoresm 4 1 The following are Euchidenn domains

(1) Z with 3(a} = {al

(2) Fl} where F s 2 field with 8(f(x)) =20¢ 7 of f(x) # 0
8(0)=0

ProoF  Theorem 171 of Chapter 2 Theorem 13 of ths
chapter and its corollary M

TuroreM 47 Let ¢ € 1 a Euchdean domamn Then 8(a) — 1
> ais vumtof J

Proor  First we note that §(1) — 1 since I =1 1andsoby
() of Defintton 4 1 8(1) = 8(1)8(1) and since 5(1) € Z* (1) =1

Consider the imphcation <= Let a be a umt Then3b € 1 3 ab
=1 So8(¢)3(b) — 1 mnd since 8(a) € Z* §la) =1

Consider now the imphcation = Let ${a) =1 Then3g r €/
Bl=ig4rr wih M) <D - 12K 0= —ag=Ha 8 2
unit L]

THEOREM 4 3 a p €1 a commutative nng with an identity
element p rreducibie =>agcd of  and p s an associnte of 1 orof p

THeorEM 44 p € [ a Euclidean domain p uwreducible =p
1s prime

Tueorem 45 A Euchidean domain 1s Gaussian
ProBLEM 4 ] Prove Thearem 4 3

PROBLEM 4 2 Prove Theorem 4 4 (Follow the proof of Theo
rem 17 6 of Chapter 2}

ProgieM 43 Prove Theorem 4 § (Follow the proof of Theo
rem 17 7 of Chapter 2)

ProBLEM 44 Prove that i f(x) g(x) € F[x] F a field 3
stx) 1) € Flx] 3 s00f(0) +2{x)glx)  d(x) where d{x) s the
monic ged of f(x) and g(x)

THEOREM 46 A 1s a Gaussian domain => A4[x] 1s a Gaussain
domain

PRrOBLEM 4 5 Prove Theorem 4 6 (Hint let F be the field of
quotients of A Then apply Theorems 41 45 37 etc)



Fields of Quotients of Polynomials 127

5. POLYNOMIALS IN TWO INDETERMINATES

Let R be a ring with an identity element and, as before, let / be the set
of nonnegative integers. Then by Theorem 7.1 of Chapter 4, R"P
is a left R-module having as basis {e,,} where e,,n» = (b,,™") e 1x1>

where b,,,"™"=1 and b,,"" =0 for (m,n) # (i,j). We define e,
“ Cup= Criuss:- THEN g is @ neutral element for multiplication and
if we let e;,0=2,¢eo,, =1y, we have e, , =x"y" for (m,n) € I X 1.

Then, as before, by Theorem 8.3 of Chapter 4, we have an associative
multiplication defined in RY*P and it is distributive with respect to
addition when we make the usual defimition of the product of two ele-
ments when expressed as a linear combination of the basis elements.
Lastly, we replace the element reg,o by r, Y r € R.

DErINITION 5.1.  The ring defined above is called the ring of
polynomials in the two indeterminates x, y and is denoted by R[x, y],
and iIf R is commutative, it is called a polynomial algebra. An element
fG,y) =321, 32 a,x'y’ € R[x,y], is called a polynomial in the
indeterminates x,y, the a,, are called the coefficients of f(x,y), a,
is called the coefficient of x'y*, and if one or more of the q,, # 0, and if
a., is a coefficient such that m -+ » is maximum of i + j for all nonzero
a,;, then m + n 1s the degree of f(x,y).

To consider such a ring as (R[x])[y] is possible following a
remark in Section 1, but it is notationally simpler to call the elements of
the basis over R[x] fo, fi, fe. - . . and in particular f;, y. Using this and
the above definition the following theorem may easily be proved.

THEOREM 5.1.  If R is a commutative ring with an identity
element, the following rings are isomorphic: R[x,y], (R[x])[y],
Rly,x], (R[y])[x].

PROBLEM 5.1.  Prove Theorem 5.1.

PROBLEM 5.2.  Examine the theorems pertaining to R[x] and
see which ones generalize to R[x, y].

6. FIELDS OF QUOTIENTS OF POLYNOMIALS

DEeriNITION 6.1, If F is a field, the field of quotients of F[x] is
denoted by F (1); that of F[a,y] by F (x, ). [Note: elements of the
above fields are sometimes called rational functions of x or of x and ¥.]

THEOREM 6.1. If I is an integral domain, and F its field of
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quottents then the field of quotients of 7[¥] 1s F(x) thatof /[x 3]s
F(x3)
ProOBLEM 6 1 Prove Theorem 6 |

7 IDEALS

We are now going to consider a particular kind of subning which for
nngs plays much the same role as does an wmvanant subgroup for
groups

DeftntTioN 7 1 A subring #Z of anne R 1s 1 left (right) ideal
e s aleft (nght) R module A tmo sided (also called bilateral) ideal
1s a subring which 1s both 1 left and 2 nght ideal n R

If 1t1s clear from the context or 1f 1t does not matter (1s 1s the case
1f R 1s commutitive) which side an ideal s we shall say merely ideal

ProsLem 7 1 Prove that # 15 1 left (nght) ideal mnng R
(1) ztrsasubringof Rand(QVa € . Yr € R ra € &t (ar € 1)

PrOBLEM 72 Prove that 2 15 1left (nght) tdeal n1ring R &
MY, e, Ema a € andDVaE n VrER ra€n
{ar € n)

ProBLEN 7 3 Prove that in Z the multiples of an integer m
form an 1deal

ProBLEM 74 Prove thatn F[x] where £ 1s a field the mut
tiples of any particular polynomal f{v) form an ideal

PROBLEM 7 § Prove that in Fx v] where F 15 a field the
set of all polynorals with @y, — 0 form an 1deal

ProsLEmM 7 6 Prove that in every ning (except one ring) there
are at least two distinct ideals

PropLeM 77 Determine alt the 1deals in a division ring m a
field

THeOREM 7 | Let S be « set of wdeals in 1 nng R Then the
common part of the 1deals of § s an 1deal in R 1nd 1s contuned 1n
every ideal of §

Teeorest 72 Let ¢ be an wdeal 11 aing & Then consider
ng R as an R module 215 a submodule of R Further 1f 4 1s any
set of elements of R the smaltest teft tnght) 1deal in R contaiming A
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is the submodule generated by A (cf. Definition 5.2 of Chapter 4).
This ideal is called the left (right) ideal generated by A.

ProBLEM 7.8. Prove Theorems 7.1, and 7.2.

PROBLEM 7.9. Let A C R, aring. Give the general form of an
element in the left ideal generated by A.

PrOBLEM 7.10. Do the same as in Problem 7.9 for a ring with
an identity element.

ProBLEM 7.11. Give an example of a ring and an ideal in it
for which the form of Problem 7.10 is necessary.

DEFINITION 7.2.  An ideal # is a principal ideal < #¢ is gen-
erated by a single element a. If a principal ideal is bilateral, it is usually
denoted by (a).

ProsLEM 7.12. Show that the ideals of Problems 7.3, 7.4 are
principal 1deals.

ProBLEM 7.13. Show that the ideal of Problem 7.5 is not a
principal 1deal.

ProBLEM 7.14. Give the form of a general element of a prin-
cipal ideal in a ring when R has an identity element and when R does
not.

ProOBLEM 7.15.  Prove that if R has an identity element, then
R=(1).

8. PRINCIPAL IDEAL RINGS

. DerINiTION 8.1. A ring R is a principal ideal ring < every
ideal 1n R is principal.

THEOREM 8.1. A Euclidean domain is a principal ideal ring.

_ CoroLLARY 8.1.  Z and F[1], where F is a field, are principal
ideal rings.

PROBLEM 8.1.  Prove Theorem 8.1 and its corollary.
PROBLEM 8.2. Show that a Gaussian domain need not be a

.p])rilr;cipal ideal ring. (Hint: use Theorem 4.6 twice and Problems 7.5,
.13)

THEOREM 8.2.  An integral domain [ is a principal ideal ring <
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() Va b €1 a bnotbothzero Taged dofuandb d € |

B ars€iad=ratsh

(3) 1f n the sequence ¢, a; d3 of elements of f eachis a
divisor of the preceding Tn 3 V& = 1 ay 15 an assoctate of ¢,

Prosrenmt 83 Prove Theorem § 2

9 QUOTIENT RINGS AND EQUIVALENCE
RELATIONS IN A RING

In Chapter 3 we found tn Theorems 3 | and 3 2 a complete solution
1o the problem of determining which equivalence relations were com
patible with the structure of a group Here we consider the same
problem for nings The complete solution 1s given by Theorems 91
and 92 As promised 1deals pliy the role which invanant subgroups
played before

DEFINITION 9 | An equivalence relation P defined between
elements of 1+ ning R 15 companble with the structure of R {or some
times more briefly with R) ¢ P 1s compitible with all internal and
external 11ws of composttion of R

THEOREM 9 1 §f ¢ 15 a bilateral ideal m a rting R then the rela
tion (xPy < x—3 € ) 15 an equivilence relation compatible with

PropLem 9 1 Prove Theorem 91 (Hwint use Theorem 3 1
of Chapter 3 and Defimtion 7 1)

TueoreM 92 Every equivilence relation P 1 a nng R com
patible with R 15 of the form (xPy <= x—1y € ) wherest1s a
bilaterat 1deal of R

ProBLEM 32 Prove Theorem 92 (Hint use Theorem 3 2 of
Chapter 3)

THEOREM 9 3 Let R be a nng # a bilateral sdeal in R P the
equivalence relatton of Theorem 9 1 Then the quouent set of R by
Pis anng

ProoF This follows immediately from Theorems 121 122
12 4 of Chapter 2 and Theorem 3 8 of Chapter 3 generalized to groups
with operators =

DerFNITioN 92 The ning whose existence 1s established by
Theorem 9 3 1s denoted by Rizx and 1s called the quottent ring of R
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with respect to i . Sometimes it is called a difference ring and is
denoted by R — 4. The equivalence relation of Theorem 9.3 is often
denoted by x = y mod 2.

PrROBLEM 9.3. Prove that in Z, a = b mod (m) is equivalent
to a = b mod m. Thus show that Z/(m) is isomorphic to Z,,.

ProBLEM 9.4. Let R be the ring of even integers and #£ = (6).
Find R/ut.

PROBLEM 9.5. Let R=Zs, st = (3), &£ =(6). Find Z,/ &
and Z,,/ &. Are there divisors of zero in either of these rings?

PrOBLEM 9.6. Let R=2Z,[x], ## = (x*+x+1). Find Rfut.
Letting 6 represent the equivalence class containing x, write the
addition and multiplication tables for R/#. Is it a field?

ProBLEM 9.7. Do the same as in Problem 9.6 for R/#¢ where
=03 4+a1+1).

In stating the next theorem, we write the letter for a homomor-
phism as an exponent. We shall frequently do this in Chapter 6.

THEOREM 9.4. Let a be a homomorphism of a ring R into a
ring §. Then the set of all elements r € R 3 ra = 0 is a bilateral ideal
# in R and Ra is isomorphic to R/ ut.

ProBLEM 9.8. Prove Theorem 9.4.

10. PRIME AND MAXIMAL IDEALS

DEerFINITION 10.1.  An ideal # in a ring R, is a prime ideal in
R& (ab € m,a,b € R=>eithera € s orb € u).

DEFINITION 10.2.  An ideal # # R in a ring R, is a maximal
(divisorless) ideal & (#, anidealinR, & # s, & O s =4 = R).

PROBLEM 10.1.  Prove that in Z, if p is a prime, (p) is prime
and maximal.

. PROBLEM 10.2.  Prove that if ¢(x) is irreducible in F[x], where
F is a field, then (¢(x)) is prime and maximal.

. PrROBLEM 10.3. In I[x,y], where I is a Gaussian domain in
Which 2 is a prime. show that the following ideals are prime: (x),
(x,¥). (x,,2), and show that (x,y,2) is maximal.

PROBLEM 10.4.  Show that the ideal of Problem 7.5 is a maxi-
mal ideal.
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In Problem 10 3 we have two examples of prime 1deals which are
not maximi] However 1na commutative nng with an identity element
every muamil idel 1s prnime See Corolflary 10 1 below

The nnture of the quottent ring, R/ naturilly depends n part on
the nature of the nng R but 1lso on the nature of the wdeal s For
example R m1y have no divisors of zero while Rize does [for nstance
ZJ(6)] or on the other hand R m1y hive divisors of zero and lack
an 1dentity element while Rizx muy be a field The next two theorems
give important information 1n this respect

Tueores 101 Let R be a commutitive ting with an dentity
element and 2 an 1deal in B Then R/z 15 nintegral domain & 2 15
A pnme ideal

Proor Let # be a pnime tdeal Uwing the notation introduced
in Defimtion 92 10 show that R/ 1s n integral domaun we must
show thatif ¢b = 0 mod & « # 0 mod 2 then b = 0 mod 4 But
this follows immedively from the defimtion of pnme deal smee x — 0
mod 2 <> x € It

Let Riz be an mtegral domamn We must show thif ub € 2
then either ¢ € 2z or b € 2t Suppose that 1 & # Then ¢ # 0 mod
s Thus of ab € 2 b — 0 mod s and since m wtegral doman
does not have divisors of zero we must have b = 0 mod % =b € 2
Therefore  1s prime ™

THEOREM 107 Let R be a commutative ning with an identity
element and 2 2n deal n R Then Rjz 15 a field & # 1s A maximal
1deal

ProOF  Let £ be a maximal ide sl To show that R/t 1s a field
1t 13 sufficient to show that each equivalence cliss not zero has anin
verse For this it 1s sufficient to show thit for any ¢ € R 2 c 20
mod« b€ R D b= I mod 2 Then the equivilence class con
tawning b will be the verse of that contaming ¢ Consrder the 1deal
generated by 2 md ¢ S nce % 1s a miximal ideat and ¢ & # this
tdeal 1s R= (1) re 1 1sn the ideal generated by # and ¢ Thus
da€ s and bERD 1 —a+b Therefore | =bc mod &
Therefore Rjx 15 a field

Let Rjo be afield Thengivenc #0mod 4 36 ER 2 b =1
mod £z This implies that the 1deal generated by # and any element
¢ o contains 1 and 1s therefore the whole rng R Therefore 15
maximal "

CorotLary 101 Under the conditions of Theorem 101 or
102 a maximal 1deal 1s prime
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ProBLEM 10.5. Prove Corollary 10.1 without using Theorem
10.2.

ProBLEM 10.6. Let R be a commutative ring without divisors
of zero and let W be the ring obtained in Problem 1.23 of Chapter 4.
let YbethesetofallzE W D Vr & R, zr=0. Prove that Y is a
prime ideal in W.

ProsLEM 10.7. Let R be a commutative ring without divisors of
zero. Prove that 3 an integral domain D containing R as a subring.
(Hint: let D = W/Y where W and Y are as in Problem 10.6.) This is
the improvement on Problem 1.23 of Chapter 4 which was promised
earlier.

11. EXTENSIONS OF FIELDS

In the rest of this chapter we are going to consider fields. First, we
shall prove in this section that certain types of extensions of fields
exist, then we shall analyze the structure of fields. Finally, we shall

at the end of the chapter consider extensions of isomorphisms between
fields.

THEOREM 11.1. Let F be a field. There always exists a field K
containing F as a subfield and an element 6 € K such that 0 is not a
zero of any polynomial of positive degree f(x) € F[x].

Proor:  One such field is F(x), the field of quotients of F[x],
as deﬁned in Definition 6.1. One such element 8 can be taken to be a,
since if it were the zero of a polynomial f(x) € F[x], we would have

the elements 1, x, 2, . . ., x" linearly dependent, where n = deg f(x),
and §h1s is impossible since 1,x,x2,. .. form a basis of F[x] and so
are linearly independent over F. B

THEOREM 11.2.  Let F be a field. If 3 a polynomial f(x) €
F[x] 3

(1) degf = 2,

(2) f(x) is irreducible in F[x], then 3 a field K containing F as
asubfield 3 K has a zero 6 of f(x). (Here we use “‘containing” in the
sense that F is imbedded in K, as we have been doing.)

PROOF: By Problem 10.2, (f(x)) is a maximal ideal in F[x].
Hence by Theorem 10.2, F[11/(f(x)) is a field. The equivalence
classes of K determined by elements of F form a field isomorphic to F,
and the equivalence class determined by x is a zero of f(1). n

Exanmere 11.1. Sf(a) =x*+4+ 1+ 1 is an irreducible polynomial
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i Z,[x], ind so by Theorem 102 Zy[x]/(¥*+x+ 1) 1s a field K
We wish to determune the elements of this field By Theorem I 4 every
polynomial g(x) € Za[x]1s g(x) = ax+ b mod (x*+x+ ) where
a b € Z, Thus there are only four equuvilence classes in A Let the
equivalence class contaiming x be 8 and those determined by 0 1 be
denoted by 0 1 respecuively Then the four elements of K are 0 1 8
9+1 Since 0 1s a zero of ¥+ v+ 1 we have 0+ 6+ 1=0 or
#*= 0+ 1 and by this hist relation we can determune all products
Thus 8 (0+ 1) =03+0=0+1+0=1 (6+1)=0+1=0+1
+1=0 elc

ExXaMPLE 112 f(x) =x>~2 15 n wreducible polynomual in
Q[x] and so QIx)/(x*—2) 1s a field A We wish to determne the
elements of ths field By Theorem 1 4 1f ¢{x) € Qlx} glx) —ax*+
br+ ¢ mod (x*—2) and here we have infinitely many elements in
& since there are infimtely many chowes for a & ¢ Let 6 denote the
equivalence class x nd let the eq class determined
by r € Q be denoted by r Then since 615 a zero of x* —2 we have
=2 Thus (62+2)(8 — S0+ 1) — 6 — 56+ 30*— 100+2="8
—10+3¢*~ 108 + 230 — 86 — 8 Ifun1s desired to find the inverse
of ¢80 +¢,8+¢o then one way 15 to use Problem 44 with f(x)
=x—2and g(t) =¥+ (,x+ ¢, Then (o8 + .0+ ¢o) ' =1(8)

ProBLEM 111 Prove the last statement above

ProsLEM 112 For the field of Example 12 find (6% —48
+0?

PrROBLEM |1 3 Take any polynomial you found in Problem
3 18 which s irreducible m Z3[x] and descnbe the field obtaned by
using 1t as in Example 11 1

ProBLEM 11 4 Prove that f{x) — @+ v+ | 1s irreducible in
@[] and discuss the field obtuned by using it as was done in Exam
ple 112 with ¥ ~ 2

ProBLEM 115 Describe the field Q[x)/(x'—2) Fmd the
verse of 62+ 3 i1t where € 1s the zero obtatned for x* 2

12 STRUCTURE OF FIELDS

Treorewm 121 Let K beafield containing F as a subfield Then
K 1s a vector space over F

Proor  This follows directly from Problem 4 4 of Chapter 4
since K 1s a K module ™
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Note: Henceforth, for brevity, if we write the field K D F, we
shall mean that the field K contains the field F as a subfield, unless
some remark is made specifically to the contrary.

DEeFINITION 12.1.  Let K D F. Then the dimension of K over
F is called the degree of K over F and is denoted by [K:F], if it is
finite.

THEOREM 12.2. Let K D F and let 8 € K. The vector space
L over F generated by 1,0, 62, ... i.e.,thesetofall ¢,i € {0} U N,
is a subintegral domain / of K and is the smallest integral domain in
K containing F and 6.

ProoF: The element 1 is an identity element, there are no divi-
sors of zero since we are dealing with a field K, and closure with
respect to multiplication follows from the obvious fact that the product
of two elements of the form X a,6' is another element of the same
form. u

DeFINITION 12.2. Let K D F, 0 € K. Then 0 is algebraic or
transcendental over F according as the integral domain / of Theorem
12.1 as a vector space over F has finite dimension or not.

THEOREM 12.3. Let K D F,0 € K, and 6 be algebraic over
F. Then

(1) 3a unique monic polynomial f(x) € F[x], irreducible in
Fx]1 2 f(6) =0

(2) the dimension of I, of Theorem 12.2 for 6, is equal to the
degree of f(x),

(3) for 6, the integral domain of Theorem 12.2 is a field, the
smallest subfield of K which contains F and 6.

PROOF:  Let n be the dimension of I over F. Then by Problem
6.1 of Chapter 4, the elements 1,6, 0% ...,0" are linearly dependent
over F: ie., day, ay,...,a, € F, not all zero, 3 a,+ a,0 + a,6?
+ - +a,0"=0. Then a, # 0, for otherwise, if a, were the particular
a4 (.>f. largest subscript of the nonzero a,, then we should have on
dividing by a,, 0= by+ b0 + - - - + b7, j < n, from which it
follows immediately that a subset of 1,0, ..., ! {perhaps the whole
set)'\vould form a basis of /, and I would not be of dimension n over F.
S0.if we Jet ¢; = a,/a,, we have 6 a zero of the monic polynomial
fQ)y =+ Cp-A" P+ -+ x4+ ¢p € F[x], and we have proved
that 6 cannot be a zero of a polynomial of lower degree.

We must show that f(x) is irreducible in F[x]. Suppose, on the
contrary. that f(x) = g(x)h(x), where g(x), h(a) € F[x] and each
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15 of positive degree Then f(8) = g(8)h(#) and since K 15 a field
exther g(8) =0 or £(0) =0 But by the above this 1s impossible
stnce & (x) and i(x) are by hypothesis of degree less than n

We must show that f(x) 1s umique Let £(x) € F[x] be monic
and g(¢) =0 Clearly deg 5 > n Hence by Theorem 14 3 g(x)
r(x) € F[x] 3 4(x) =f(x)q(x} + r(x} nd r(x) =0 or deg r(x)
< n Now0=g(0) =f(6)g(8) +r(f) =r(8) —0=r(x) =0since
otherwise 0 < deg r(x) <n Therefore g(x)=f{r)q(x) and if
5(x) 15 rreductble tn F[x} degqgtx) = Oandif g(x)1s monic ¢{x) — 1
and f(x} = g(x)

We have now established conclusions (1) and (2) To prove (3)
we first show that each nonzero element of / has an inverse in {
Let a=a,+a 8+ +a, O VELT Let gx) =astax+
+a, ;x ' Stnce f(x) 1s ureducible (f(x) g(¥)} =1 and so by
Problem 4 4 7 s(x) {x) € F[x] 2 s(x)f(x} +t{x)s(x) — 1 Then
since f£(8) — 0 we hive 1(0)g(6) —t(8)a — 1 1€ 1(8) 1s the inverse
of £{8) and 1(0) € I Swince any subfield of A contuning F and &
must contarn ! il ts proved =

DEFINITION 12 3 LetR D F 8 € A ¢algebrarc over F Then
1f () 1s the trreducible monie polynomial in F [x} having € as a zero
f(x) 1s called the mummum polvnomal of 8 over F and the degree of
Jx) 1s the degree of @ orer F

DeriNiTION 124 Let K D Fand 9 € A

(1) 1f 815 algebraic over F the integral domain f of Theorem 12 2
which in this case is a field 1s denoted by F(8)

(2) 1f 815 transcendental over F the field of quottents of the inte
gral domain of Theorem 12 2 1s denoted by F (8)

(3) et KX D L D F ThenLisasimple extensionof Fe> 36 € L
B3 L=F(0)

{4) K 1s algebraic over F ¢ each element of K 1s algebraic over
F Otherwise A ts transcendental over F

CoROLLARY 12} Every element of F (8) if 8 1s algebraic over
F can be expressed uniquely i the form do + d 6 + +dy g0 !
where & € F =01 a—1 and where n s the degree of 6
over F

CoroLLaRY 122 The degree of ¢ over F 1f 815 algebratc over
F 15 equal to the degree of F (8) over F

COROLLARY 123 If f(x) 15 the mmimum polynomal of #
algebraic over F andif g(8) — 0 f(x) € F[x] then f(x)]g(x)
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THEOREM 12.4. Let F be a field. Then there always exists a
field K which is a transcendental extension of F.

Proor: The field of quotients of the polynomial ring over F is
such a field. -

LEMMA. LetK D Fand @ € K. Then § € F < the minimum
polynomial of 8 over F is of the first degree.

ProBLEM 12.1. Prove the lemma.

With the above lemma and Theorem 12.3, we can restate Theorem
11.2 as follows:

THEOREM 12.5. Let F be a field. Then d an element 6, algebraic
over F and a simple extension, F (8) # F,of F& 3 f(x) € F[x] of
degree n = 2 D f(x) is rreducible in F[x]. In the latter case, F (6)
has a zero of f(x).

ProBLEM 12.2.  Finish the proof of Theorem 12.5.

THEOREM 12 6. Let L = F(8) be a simple extension of a field
F, let 0 be algebraic over F, and let ¢ € L. Then ¢ is algebraic over
F, and the degree of ¢ over F is < degree of 6 over F.

Proor: By Theorem 12.3 and Definition 12.3, the degree n of 8
1s equal to the degree of F (8), i.e., is equal to the dimension of F (8)
as a vector space over F. Since ¢ € F (0), ¢ is equal to a linear com-
bination with coefficients in F of 1,86, 62,. . .,6""! and hence so is
every power of ¢. Thus the set 1, ¢, ¢2%,. . ., " are n + 1 elements of
the vector space F (#) and so are linearly dependent. Thus by Defini-

tion 12.2, ¢ is algebraic over F, and since F (¢) C F (), degree of
¢ <n. -

CoRrOLLARY 12.4. Let 6 € K D F. If 8 is algebraic over F,
F () is algebraic over F.

ProBLEM 12.3.  For the field of Example 11.2, find the degree
of 6+ 1; of 6 of 62 + 1.

PROBLEI\:{ 12.4.  For the field Q(8) of Problem 11.5, find the
degree of 62, its minimum polynomial, and describe the field L= Q (67).

Find the degree of 6 over L and describe L(6). Do the same for 6°
over Q and M = Q(6?).

PROBLEM 12.5.  Consider g(x) =a%—2 € Q[x] and the field
Q[-\ll(g(x)). Treat this as in Problem 12.4. Describe the fields
Q(6°), Q(6%), Q (8%, 0 (65).
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PROBLEM 12 6 Let F=Z,(s}) where p 15 a pume and ¢ 1s
transcendentil over 2, Show that f{x) —x>~1 s ureducible n
F{x1 (Hint use Theorem 3 8 with A of the theorem Z,{t] ) Let@bea
zero of f(x) Show that 81s a zero of multiplicity p of f(x) and show
that F(8)— F(0) fori—1 p=1

13 ADJUNCTION OF SEVERAL ELEMENTS

TO A FIELD
‘We call the process of proceeding from a field F to afield A containing
F and one or more spectfied el of those el to

the field £

DEerFINiTION 13 1 Let A O F and let A be any set of elements
of A Then F(A) 1s the smallest subfield of A which contains F and
all the elements of A

‘That such a field always exists follows by considering the common
prt of all subfields of A which contun F and 4

THEOREM 13 | Let A D Fand 9, 8, € K Then (F(8))(6,)
— (F{8:))(8;) = F(A) where A — {6, 8.}

PrOBLEM I3t Prove Theorem 13 1

ProBLEM 132 Generalize Theorem 13 1 to the adpunction of
8, 8, Use induction to prove 1t

THeEOREM 132 Let KDL 2 F Then if [K F} s fimte
[k F1=[K L] [LF]

PROOF Let (L F1=n and (A L1 —m and let 8, B
be a basis of L over F a, am be a basis of K over L We shall
show that the mn elements a8 a8, @ a1 @

anf3, form a basis of K over F

First let x € K Then x — 37", d oy where the d € L and so
di— Zl. ey, where the ey € F Then x=3J", EL e 8, where
the ¢, € F Hence every element of X can be expressed as a linear

of these mn el with mF

Now we must show the linear of these i el t
Suppose I I, cyaf;=0 where the ¢y € F Then rewntng
the equation as 37, (EL,cyf)a =0 we have i, cy8,=0 for
=12 m smee ShycgB € L and the o form a basis of X
over L But since the 8; are linearly independent over F we have
cy—0Oforsi=12 my=12 n Therefore a,8; a,f.
anf3, form a basis of K over R and the theorem follows [
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CorOLLARY 13.1. LetK D LD F, KDHDF,M=L(H).
Then [M:F] < [L:F] - [H:F].

CoRrOLLARY 13.2. If @ is of degree n over F and ¢ is of degree
m over F, then F (0, ¢) is of degree < mn over F.

CoROLLARY 13.3. If @ is of degree n over F and ¢ is of degree
m over F (), then F (0, ¢) is of degree mn over F.

THeorReEM 13.3.  If the field K is of degree n over the field F,
and if 8 € K and 6 is of degree m over F, then m|n.

CoroLLARY 13.4. If ¢ € F(0), where 6 is algebraic of degree
nover F, then ¢ is algebraic over F, and the degree of ¢ over F divides
the degree of 8 over F.

ProBLEM 13.3.  Prove the coroliaries to Theorem 13.2.
ProBLEM 13.4. Prove Theorem 13.3 and its corollary.

PROBLEM 13.5. Let f(x) =x*—2 and g(x) =x*—3 be ele-
ments of Q[x]. Let 6 be a zero of f(x) and ¢ be a zero of g(x). Show:
(a) f(x) is irreducible in Q(¢)[x]. [Hint: take a general element of
Q(¢) and show that it cannot be a zero of f(x).] (b) g(x) is irreducible

in Q(8)[x], (©) (Q($))(6) = (Q(8))(¢) and this field is of degree
6 over Q.

PROBLEM 13.6. (a) Let ¢ be a zero of f(x) =x*—2 &€ Q[x].
Show that in Q(8) [x], f(x) = (x — 6) (x2 + 6x + 62).

(b) Let g(x) =x24+x+ 1. Show that g(x) is irreducible in
Q(6)[x]. (Hint: use Corollary 13.4.)

(c) Let w be a zero of g(x). Show that f(wf) = f(w®0) =0 and
$0 Q{w, 8) contains all the zeros of f(x).

(d) Show that the degree of Q(w, 8) over Q is 6.

TE{EOREM 13.4.  Let f(x) € F[x], where F is afield. Then J a
field K D F 3 in K[x], f(x) factors into a product of factors of the
first degree € K[x].

PROBLEM 13.7.  Prove Theorem 13.4 by repeated application
of Theorem 11.2.

DEF'INITION 13.2.  Let f(x) € F[x], where F is a field.

(1) if f(x) is irreducible in F[x], a smallest field K containing
F and 6, a zero of f(x), is called a stem field of f(x) over F,

(2) a smallest field L containing F and all the zeros of f(x) [i.e.,
ahsmallest field L 3 in L{x], f(x) factors as in Theorem 13.4. We
shall often describe this by saying that f(x) factors completely] is



140 Polynonuals Faciorizanion Ideals and Extens on of Fields

called a spluting field of f(x) over F (older terminology was root field )
1t should be noted that mn part {2) we do not require that f{x) be wre
ducible tn Fx]

ProBLLM 138  Prove that Q(w 6) of Problem 13 61s a spht
ting field of x* — 2 over 4 and show that 0(8) Q{w 0) A(w* 6) are
stem fields

ProRLEM 139 Show that Ofw 6) ts a splitung field of *—2
over (6) 1nd give the stem fields of X — 2 over Q{w)

PROBLEM 1310 Give stem fields and a splitung field of ¥* —2
over Q

PROBLEM 1311 Do the same as 1n Problem 13 10 for x*—2
over O

PROBLEM 1312 Do the same as in the last problem for the
(1) of Example 114

ProBLEM 1313 Find an nreducible polynomunt of degree
three of Z,[x] and find uts stem fields and sphtting field over Z,

14 TRISECTION OF AN ARBITRARY ANGLE

For this we need the following three exercises the first two of which
are useful for other purposes as well

PROBLEM 14 1 Let fix 3} «(x ) € F[x 3} where Fisa
field be of degree | Definng a solution of i{x ») — O far any h(x 3)
€ Fx y] s an ordered par (¢ b) € A xA where K D F 3
h(a b) =0 show that the solutrons common to f(x 1) —0 and
glx y)=0are n FxF

ProsLEM 142 Llet f(x )) gix)) € Flx 3] where Fisa
field be of degree 1 or be of the form (x — a)® + (3 — b)? ~ r* where
a b r& T then the solutions common to f{x 3} —Oand 5{x y) — 0
€ K X K where & 15 of degree 1 or 2 over F

PROBLEM 143 Prove that 4v' 3y — ¢ s srreducible m Q(1)
[x] where ¢ 1s transcendental over Q@ (Hint use Theorem 3 8 with
A-Q0))

By the use of straightedge and compasses all lengths which can
be constructed by Problems 141 2 3 are of degree 2 over A (The
wdentity of @ 1s the unit of length) Since for an arbitrary angle & a
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line-segment of length cos 6 can be constructed, if it were possible to
trisect 6, it would be possible to construct a line-segment of length
cos (0/3). Now 4cos? (8/3) — 3cos (6/3) = cos 0 (verify), so if it were
possible to trisect 6, it would be possible to construct a line-segment
which was a zero of 413 — 3x — f, where 1 = cos 6. Let 6 = 60°. Then
since this polynomial is irreducible in Q[x] (verify), any zero would
be of degree 3 over Q. But this could not belong to a field of con-
structible elements by Corollary 13.4, since 3 /2" for any n € N.Thus
an angle of 60° cannot be trisected in the prescribed manner. Similar
reasoning applies to many other angles.

ProBLEM 14.4. Fill in the details of the above discussion.

15. EXTENSIONS OF ISOMORPHISMS

We are now going to consider the following situation: 3 an isomor-
phism « between two fields, F, F; K and K are extensions of F, F,
respectively. Now we ask, when can the isomorphism « be extended
to an isomorphism between K and K? Defimtion 3.4 of Chapter 1 is
the definition of an extension of a mapping and so is pertinent here.
We shall here, as will be customary in the following chapter, write the
symbol for an isomorphism as an exponent.

THEOREM 15.1. Let R,R be two isomorphic commutative
rings with identity elements and let a be an isomorphism between
them. Then 3 an 1somorphism B8 between R[x] and R[x] D a is the
restriction of 8 to R. Further, f(x) € R[x] 1s irreducible in R[x]
& [f(x)]#is irreducible in R[x].

PrROBLEM 15.1.  Prove Theorem 15.1. (Hint: define B as fol-
lows: ¥V r € R, r8=ro, x8 =y, etc.)

. THEOREM 15.2. Let F, F be two isomorphic fields under the
isomorphism a. Let f(x) = f, + fix + - + * + f,x" be irreducible in F[x]
and let f(a) =[f(a)]*=fo+fix+ - +fx", where f,=f= and
where 8 is the extension of « of Theorem 15.1. Then, if 6 is a zero of

Q) and 6 is a zero of f(x), a can be extended to an isomorphism
Y of F(6) onto F () 2 6" =0.

PRooF:  F (6) 15 isomorphic to F[x]/(f(x)) and F(8) is iso-
morphic to F{1]/(f(x)). The isomorphism 8 of Theorem 15.1 thus
induces an isomorphism y between these two quotient rings and
clearly if ¢ € F,a=a* € F, then the image under y of the equiva-
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lence class determined by a 1s the equivalence class determined
by a* -

THEOREM 153 Let f(x) be ireducible in F[x], where F s
a field Then

(1) all stem fields of f(x) over F are isomorphic

(2) all splitting fields of f(x) over F are 1somorphic

PrOBLEM 152 Venfy Theorem 153 for the stem fields in
Problems 13 § and 13 10

ProsLEM 153 Determine which of the fields m Problem 12 5
are stem fields Why are not all Q(#') 1somorphic®

ProBLEM 154 Prove Theorem 153 by repeated application
of Theorem {52

DEFINITION 15 § Let F L, L,k be fields D FCL, CK
and F C L, C A Then L, and L, are comugate subfields of K over
Fe 3 an automorphism @ of K 3 (1)L — L, and (2)x"=x
Yx€F

PrROBLEM 155 Let f(x) be wreducible in F{x]} and X the
sphtung field of f(x) over F Prove that the stem fields of f(x) over
F are conjugate subfields of A over F



Chapter 6: Fields

The simplest fields which we have considered are the field of rational
numbers and the fields consisting of the residue classes modulo p,
where p is a prime. It 1s proved in Section 1 that every field has a sub-
field isomorphic to exactly one of these. So in many discussions it is
necessary to bear this in mind and to distinguish between them. We
do so.

Approximately the first two thirds of the chapter is devoted to
introducing concepts about fields, to proving results involving them,
and to proving the fundamental results of the Galois Theory of Fields.

The last third of the chapter is devoted to the Galois Theory of
Equations and to a consideration of the possibility of finding a general
formula for the roots of an equation of degree »n in terms of the coeffi-
cients and addition, subtraction, multiplication, division, and the
extraction of roots.

1. PRIME FIELDS

In Chapter 4, the characteristic of a ring was defined. We now prove

a result about the charactenstic of any ntegral domain and so of any
field.

THEOREM I.1. An integral domain I has characteristic p > 0
= pis a prime in Z.

PROOF:  Suppose that p is not a prime. Then p = m - n, where
m>1,n> 1. Then by the definition of characteristic and by Prob-
lem 1.12 of Chapter 4, m - 1 = 0,n - 1 # O,but(m-1)(n-1)=p-1

=9 and so I divisors of zero. This is impossible. Therefore, p is
prime.
]

CoroLLARY 1.1.  The characteristic of a division ring is either
Zero or a rational prime.

DeriniTioN 1.1, The smallest subfield of a field F is called the

prime subfield of F. A field which has no proper subfields is called a
prime fleld.

143
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THeOREM | 2 A field F has exactly one prime subfield
Proor  The common part of 1ll subfields of F 1s a subfield of
F with the desired properties =
The next two th h 1ze !
and pnime fields

ly prime subfields

TugoreMm 13 If a field £ has charactenstic zeso 1ts pnme
subfield 1s 1somorphic to @ the field of rational numbers

Proor Now 1l € F andsodon | (=n) 1 (m—u} 1
Vm n € Z Therefore F contams a subring I generated by 1 and
1somorphic to Z Therefore since F 1s a field 1t must contain the field
of quotients of / say I which 1s isomorphic to @ "

Corotrary 12 A prnime field of charactenistic zero 1s isomor
phic to

THEOREM | 4 If a field £ has charactensuc p > 0 its pnme
subfield I1 1s isomorphic to Z, — Z/{p)

Proor  Now | € 1l andsodo® 1 12 1 p—i 1
and since (m D(n 1y=r | where mn=r mod p 0sr<p
these p elements form a nng 1somorphic to Z, which is a field ']

COROLLARY 13 A pnme field of charactenistic p > 0 1s 150
morphic to Z,,

PronLEm 1} Find the pnme subfields of all fields so far
considered

PROBLEM | 2 Prove that if £ 1s a field of charactenistic p > 0
then Va b € FandYfE Z* (a)(a+h)* —ar+ b (D) (a+ by
=o'+ b’

ProsLEm 13 Prove that the only automorphism of a prime
field 1s the 1dentity automorphism

2 CONJUGATE ELEMENTS AND AUTOMORPHISMS
OF FIELDS

DerMITION 21 If K 15 a field containing a field F as a sub
field then an awtomorphism o of K 1s an F amomorphism of K (also
calied an mutomorphtsm of XK over Fy <> Vfe F fr=f 1f Fisa
subfield of the fields K and L then an 1somorphism a of A onto L 1s
an FisomorplusmesN f e F fo=f
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ProBLEM 2.1.  Prove that if II is the prime subfield of a field
K, then every automorphism of K is a II-automorphism.

ProBLEM 2.2. Prove that the isomorphisms between stem
fields and splitting fields of Theorem 15.3 of Chapter 5 are F-iso-
morphisms.

THeEOREM 2.1.  Let F be a subfield of the fields K and L, and
« an F-isomorphism of K onto L. Then, if # € K 1s a zero of f(x) €
F[a], 6« is a zero of f(x).

Proor: Let f(x)=ao+ax+---+ax". Then ao+ a,0+
coot a8 =0andso0=0"= (qy+ a,0 + - - - + a,0")*= a*+ a,*6*
+e @, (0" =a, + a0+ -+ a, (6%)" =f(9a) =0. n

THEOREM 2.2.  If the fields K and L are of finite degree over the
field F, if o is an F-isomorphism of K onto L, if 6 € K, andif 8’ = 8¢,
then d f(x) € F[x], where f(x) wrreducible in F[x] 3 f(8) =f(8')
=0,

PrOBLEM 2.3.  Prove Theorem 2.2. (Hint: use Theorem 12.3 of
Chapter 5 and Theorem 2.1 immediately above.)

THeorem 2.3.  If f(x) € F[a] is irreducible, F is a field, 6,
and 6, are zeros of f(x), and if K is a field containing F, 6,, and 6., then
d an F-isomorphism, «, of F(8,) onto F(6,) D 6, = 0,~.

PROOF:  This is Theorem 15.2 of Chapter 5 for the case F = F,
f(x) =f(x) and @, the identity automorphism of F. n

THEOREM 2.4.  Let K be the splitting field of f(x), irreducible,
€ F[a], over F, a field, and let 6, and 6, be two zeros of f(x). Then
3 an F-automorphism of K which maps 6, onto 6.

PROBLEM 2.4.  Prove Theorem 2.4 by repeated application of
Theorem 15.2 of Chapter 5 (cf. proof of Theorem 15.3 of Chapter 5).

DEFINITION 2.2, Let a,b € K, a field containing the field F

as a subfield. Then a, b are conjugates over F < 1 f(x), irreducible,
€ F[x] 3 fla) =f(b) = 0.

. THEOREM 2.5.  Let F, F be two isomorphic fields with isomor-
p_hlsm a. Let flx) € F[a] and f(x) = [f(x)]?, where 8 is the exten-
Sion of & of Theorem 15.2 of Chapter 5. Finally, let K and K be split-
tng fields of f(x), f(x) over F and F, respectively. Then « can be

?Mended to an isomorphism of K onto K in which each zero of f(x)
18 mapped onto a zero of f(1).
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ProsLEM 25 Prove Theorem 2 5 by repeated appiication of
Theorem 15 1 of Chapter 5

THEOREM 26 Let f(x) be irreducible in F[x] where Fisa
field and let A be a sphtting field of f(x) over F Thenifa b € A
Han F wutomorphism o of A D « = b >« bare conjugates over F

ProBLEM 26 Use Theorem 2 6 to find all the automorphisms
of the spl tting field of x* —2 € Q[x] Show that they form 2 group
Identify the group

ProBiEM 27 Prove Theorem2 6

Prontem 28 Do the same as i Problem 26 for x*~2 €
Qlx

ProsLEM ? 9 Do the same as in Problem 6 for the sphtting
field of Problem 1? 4 of Chapter §

3 NORMAL EXTENSIONS OF FIELDS
AND NORMAL POLYNOMIALS

DerFiNiTION 3 1 A field A algebraic over a field F 1s 1 ormal
o er F & whenever f(x) rreducible in Flx] has a zero m K then
K contans the spl tting, field of f(x) over F A polynonual f(x) €
F{x] where F1s a field and f{x) 1s rreductble over F 1s normal over
Fe V0 azero of f(x) F(8) 1s the splitting field of f(x) over F

ProBLEM 3 1 Show that x2 + 3x + 5 s norml over @

PROBLEM 32 Show that axt+ br+x wreducible € Flx}
1s normal over F

ProBLEM 33 Prove that a field K of degree 2 over a field F
s normal over F

ProBLEM 34 Show by an example that n general a poly
nomial f(x} normal over a field F must be irreducible over F

ProBLEM 35 Show that v — 2 15 not normal over Q and that
none of 1ts stem fields 1s normal over @

ProsLest 36 Show that the cyclotomic polynomual f(x)
=XP=NHx -1 =" +x"*+ 4 v+ 1 where p s a rational
prime 15 normal over @ [Hint each zero of f(x) 1s a pth root of
unity |
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PROBLEM 3.7. Show that the polynomial x” — ¢ is normal over
F=1Z,(1).

TreoREM 3.1. If a field K is normal over a subfield F, then K
is normal over every subfield L between K and F (i.e., K D L D F).

ProoF: Let ¢(x) be irreducible in L[x], and suppose that
#() =0, where 0 € K. Then, since K is algebraic over F, df(x)
irreducible, € F[x] 2 f(8) = 0. Then, since K 1s normal over F, K
contains all the zeros of f(x). Since L D F,f(x) € L[x] and f(x)
has a zero in common with ¢ (x). Therefore, in K[x], ¢(2) and f(x)
have a factor x — # in common. Hence, in K[x], the g.c.d. of ¢(x)
and f(x) has degree = 1. But, the g.c.d. of f(x) and ¢(x) 1s in W[x],
where W is any field containing the coefficients of the two polynomials.
Hence, the g.c.d. of f(x) and ¢(x) 1s in L[x] and is of degree = 1. But
&(x) 1s irreducible in L[x]. Therefore, ¢(x)|f(x). Thus every zero of
&(x) is a zero of f(x) and since K contains all the zeros of f(x), it
contains all the zeros of ¢(x). Hence, K is normal over L. a

THEOREM 3.2. Let f(x) € F[x], where F is a field, and let K
be the splitting field of f(x) over F. Then K is a normal extension of F.

ProOF:  Let ¢(x) be irreducible in F[x] and let 6; be a zero of
¢(x) 3 6, € K. We must show that all the zeros of ¢(x) € K. Let
K' be a splitting field of ¢(x) over K and let 6, be any zero of ¢(x).
Then, of course, 6, € K'. Since ¢ (x) 1s irreducible in F[x], by Theo-
rem 2.3, J an F-isomorphism « of F (8,) onto F (8,) which maps 6,
onto 6,. Now K and K(6,) are splitting fields of f(x) over F (6,) and
F(6,), respectively. Hence, by Theorem 2.5, the isomorphism « can
pe extended to an F-isomorphism 8 of K onto K(6,). Now 8 is an
lso'morphism of K into K, afield containing K. Since 8 is an F-isomor-
phism and since all the zeros of f(x) are in K, 8 maps the set of zeros
of f(x) onto itself. Therefore, since K is generated by the zeros of flx),
B must be an F-isomorphism of K. Since 6, € K, then 6, =6, € K.
Henc_e, we have proved that each zero of ¢(x) is in K, as long as one
zero is i K. Therefore, K is a normal extension of F. n

N Tl:lI?OREM 3.3. If K is a finite normal extension of a field F,
en K is the splitting field of some f(x) € F[a].

] PROBLEM 3.8.  Prove Theorem 3.3. (Hint: consider a basis of
K over F.)

. PROBLEM 3.9.  Prove that if f(x) is normal over F, and if 9 is
zero of f(x), then F(8) is normal over F.
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ProsieM 3 10 Prove thit the following is false if a field A 15
normat over 1 field F and of L 15 a subfield of £, then K 1s normal
over L

4 SEPARABILITY

DErFINITION 4 1 A polynomial $(x) € F[x], where F1s a
field s separable orver F < ¢{x) has no multiple zeros m any exten
sion fietd of F

Anelement a € A 1 field comumng F as a subfield 1s separable
over & a 15 a zero of 1 polynomial f(x) € F[x] where f(x) 15
separable over £

A field k contamning I as a subfield 1s separable over F < every
element of k 1s separable over I”

Otherwise the polynomtal element or field 1s called mnseparable
over F

THEOREM 4 1 Let f(x) be an irreducible polynomal of F[x]
where F 1s a field

(1) If the charactenstic of F1s zero then f(x) 1s separable over

(2) sf the charactenstic of F1s p > 0 then f(x) s inseparable over
F e flx) =Zkec(x?)! where ¢, € F

ProoF  First we show that if f{x) ts mseparable its denvative
£ {x) 1s zero By Theorem 2 7 of Chapter 5 1f () has a zero of multi
plictty greater than 1 thenx = alf (x) =f (1) — 0=f(x}|f (x} since
f(x) 18 sreducible m F[x] f (x) € F[x] and x a ts a common
davisor of both f(x) ind £ (¥} But this 1s impossible unless f (x) =0
since deg f (x) < deg f(x) or{ {v) =0 Therefore f (x) =0

Now let fix) = Shoax' with a, # 0 Then f (x) — lotax'*
Iff (x) = 0 thenwe must haveq, = Qfort—0 1 n Swcea #0
while na, =0 the charactenstic of F must be a pnme dividing n so
the first statement of the theorem 1s proved Now from g, =0 for
1=01 n—1 we see that a,~ 0 1f 1 % 0 mod p Therefore the
only nonzero coeffictents of f{x) are ¢, where = 0 mod p and of
course some of these may be zero Therefore f(x) = Zhoa,x®=
Shye(xP)t where A =njp and ¢; = a,,

Now let f(x) =Sfoci{x?) and g(x) =Z}gcx  Then f(x)
= g(»*} Now g(x) may be a polynomal in x* if it 1s then f{x) 1s a
polynomial in x** and so on Suppose finatly that f(x) 15 a polynomual
m x*" but not n ¢! Then f(x) = i(x*") and h{y) 15 rreducible i
Fiy]l since f(x) 1s ireducible 1 F[x] Fucther 4(y) has no multiple
zeros since 1f 1 (3) =0 then by the above £(3) would be a poly
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romial in y* and so f(x) a polynomial in x**'. In a splitting field of
hy), h(y) = (y —a)(y — az) - - - (y — a,), where the ay, as, . . ., a,
are distinct. Let, in some further extension field, b, be a zero of x* — q,
for i=1,2,...,r. Then b =aqa, 1*°—a,=x*"—br = (x — b)*
and so, since the b, are distinct because the a, are, f(x) is an insepara-
ble polynomial and each of its zeros has the same multiplicity. 3

CoroLLARY 4.1.  The zeros of an irreducible inseparable poly-
nomial f(x) € F[x] are all of the same multiplicity.

DerFINITION 4.2, If f(x) of degree »n is an irreducible, insepa-
rable polynomial € F{x], where F is a field, and if f(x) = h(x?),
where /i(y) € F[y], while #ik(y) € F[y] D f(x) = k(x*""), then
ny=nfp is called the reduced degree of f(x).

PrRoBLEM 4.1.  Show that the polynomial of Problem 3.7 is
mseparable. Factor it and find its reduced degree.

ProBLEM 4.2.  Find an inseparable polynomial of reduced
degree 5.

THEOREM 4.2. K is a separable algebraic extension of a field
F,Lis a field between K and F => K is separable over L.

THEOREM 4.3.  Let K be a finite normal extension of a field F,
and 6, and 6, be two elements of K which are conjugate over F. Then
4 an F-automorphism of K which maps 6; onto 6,.

Proor: By Theorem 3.3, K is a splitting field over F of some
polynomal f(x) € F[x]. Then 6, and 6, are zeros of some irreducible
polynomial, g(x), € F[x]. Then by Theorem 15.3 (a) of Chapter 5,
3 an F-isomorphism « of F (6,) onto F (§;) 3 6,%= 6. Since K is the
splitting field of f(x) over F(6,) and K is also the splitting field of
fX) overF (6,), the isomorphism « can, by Theorem 2.5, be extended
10 an F-automorphism of K. g

THEOREM 4.4. Let K be a finite, normal, separable extension

of a ﬁ‘?ld F.If an element § € K is mapped onto itself by all F-auto-
morphisms of K,then§ € F.

Coincp_gOOFE Un.der the given conditions, by Theorem 4.3,-0 must
c F[l € with all its cpnjugates. Thus its minimum polynomial f(x)
unl 1] would factor in K as f(x) = (x — 8)™. But this would mean,

€S m=1, that f(x) irreducible in F[x] would have a multiple

z .
Sgrg Ea"g’ by hypothesis, 9 was separable. Therefore, m=1 and
B
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PrOBLEM 43 Prove Theorem 4 2

ProsLEM 44 Show by an example the necessity of separability
in Theorem 4 4 (Hint cf Problems 37 and 4 1)

ProBLEM 4 5 Determine whether the following 1s true L s
normal over A K 1s normal over £ = L 1s normal over F

5 SUBFIELDS AND AUTOMORPHISMS

In this section we consider the relations between subfields of a field
A and subgroups of the groups of automorphisms of K First of course
we must prove that the automorphisms do form = group

THEOREM 5 1 The set & of automorphisms of a field F and the
law of composition of Defimtion 2 1 of Chapter 2 form a group

ProoF  Since ) 1s a subset of the group of Theorem 7 1 of
Chapter 2 and the law of compositton 1s the same we know that the
associative law holds Let a« B € @ Then Ya b € F (a+b)*
=[{a+ b)*)*— [a* + b°]° = (a™)® + (b%)* — @ + b** by the prop
erties of automorphisms and the definttion of the product of two
mappings Sumilarly (ab)®® — @***? Therefore (0 15 closed The
identity mapping 1s obviously an automorphism of £ and clearly 1s
the neutral element of 2 Now for SER a bE F let x—a® '
3 =5°" Then [a+b]* ‘A[(u,ﬂ]ﬂ ’—[(x+y)’]" T—x+y—a !
+5 ' Simiarly (ab)® '=2o" 'b* ' Hence B ' as the mapping
mverse to 8 15 1n ) Hence each element of 2 has an inverse There
fore 0 1s a group "

THEOREM 52  Let F be a subfield of the field A Then the
F automorphisms of A form a subgroup A of the group © of all
automorphisms of A

PROOF  We shall use Theorem 8 | of Chapter 3 Let o 8 be
F automorphisms of A Then V& F fo=f ff—f (" '~ f There

fore fu 's= (f)¢ "=y '=f Therefore a8 ' € A Therefore A1s
a subgroup of Q -

TreEOREM 53 Let M be any subset of a field K The set of all
automorphusms £ of A @ Vm € M mf —m form a group

PrOBLEM 51 Prove Theorem 53

ProsLEM 52 Generalize Theorem 53 to F automorphisms
of K where F 1s any subfield of A
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ProBLEM 5.3. For K = O(w, 8) of Problem 13.6 of Chapter 5,
(a) find all subfields of K (there are four besides K and its prime
subfield), (b) for each subfield (use all six) F of K, find all the F-auto-
morphisms of K.

ProBLEM 5.4. Do the same as in Problem 5.3 for the splitting
field of x* — 2.

THEOREM 5.4. Let A be any set of automorphisms of a field K.
Then the set L of all elements x € K 3 VA € A, x* = x, is a subfield
of K.

ProoF: Leta & Aandlet L,bethesetofallx € K D x*=x.
Further, let a,b € L,. Then a*=a,b*=5b. So (—b)*=—b, since
b+ (=b)]J*=0=b"+ (—b)*= b + (—b) and b* = b. Finally, since
« 1s an automorphism of X, (a — b)*=[a+ (—b)]}*=a*+ (—b)°
= a — b. Therefore, by Theorem 8.1 of Chapter 3, L, is a subgroup of
the additive group of K.

Ifb# 0,b7! € K, and from bb™' = 1, we have 1 = 1*= (bb™)*
= b (b !)e=p(b~1)* = (b~')* = b1, since the multiplicative inverse
of b is unique. Therefore, (ab~1)* = ab™!, and so, the nonzero elements
of L, form a subgroup of the multiplicative group of K. Therefore, L,
is a subfield of K. n

PROBLEM 5.5.  For each subgroup A of the group of automor-
phxsms of the field of Problem 5.3, find the subfield whose existence
is given by Theorem 5.4.

PROBLEM 5.6. Same as Problem 5.5 for the field of Problem 5.4.

DEFINITION 5.1.  Let K be a field and T its group of auto-
morphisms,

If A'is a subgroup of I', N(A) is the subfield of K determined in
Theorem 5.4 and is called the subfield belonging to A.

If L is a subfield of K, Q(L) is the subgroup of I" determined in
Theorem 5.3 and is called the subgroup belonging to L.

T}}e above may also be considered for I' as the group of F-auto-
morphisms of K, where F 1s a subfield of K.

PROBLEM 5.7.  Apply the terminology of Definition 5.1 to the
resuits of Problems 5.3, 5.4, 5.5, and 5.6.

P_RQBLEM 5.8. Do Problems 5.3 and 5.5 for the smallest field
Containing the splitting fields of A2—2 and x® —1t as elements of

Z4(1) [].
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THEOREM 5 § Let X be a field and I' its group of automor
phisms For any subgroup A of I Q(N(A)) D A and for any sub
field Lof A N(Q(L)) D L

THEOREM 5 6 Let A be 4 field and T ats group of automor
phisms If A, A, are subgroups of T @ A C %, then N(4;) D
N{Ap) if Ly L,are subfields of A 3 L, C L then ©{L,) D Q(Ly)

ProsLEM 59 Prove Theorem 55
PROBLEM 5 10 Prove Theorem 5 6

ProaLFM 5 11 Give an example in which the strict inclusion
ts necesswry In the second concluston of Theorem 55 (Hint use
Problem 37}

6 ROOTS OF UNITY

DEFINITION 6 1 Let {1 be a pnme field and n 1 positive rational
ateger not divisible by the charwtensuc of I f the charactentstic
of Il 1s zero # m1y be any positive rattonal integer Then an nth root
of untty 1s any zero of f(x) — x* — 1 n any extension field of 11 The
sphitting field of this f{x) 15 called the field of the nth roots of unty
over the prime field [I and s also called the cyclotomic field of order n

THEOREM 6 | In the field of the nth roots of umty there are
exactly # dist nct nth roots of unity ind they form a multiplicative
cyclic group

Proor By Corollary 7 2 in Chapter 5 the zeros of f(x} — x"
1 are distinct since f (x) —nx  # 0 since pfn where p s the

characteristic of H 1f it 1s not zero Therefore there are n distinct
nth roots of un ty

Let « and B8 be two such 18 « 1 B —1 then (a/p)"=1
and so the ath roots of umty form a multplicative group G

Let n =M™ p where the p are distinct primes =1 2
m In G there are at most nfp elements 3 a ¥ — I since the poly
nomial ¥*¥ —1 his it most nfp zeros Therefore Yi<m d¢ €
G>3a * #1 Letb —a » Then b has pertod p  for since

¢ =1 1ts penod must be a factor of p Buth ~{a*? )
—a "? # [ Thus the product { — [T. & has period 11", p” —n
Therefore { yenerates G aindso G 15 cycl ¢ [

DEFINITION 62 A generator of the cyclic group of the nth
roots of umity is called a primutive nth root of unity
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COROLLARY 6.1. A ¢(n) primitive nth roots of unity.

DEFINITION 6.3. The polynomial ®,(x) = (x — ;) (x — &)
+++ (2 = Lsmm), having as its zeros the primitive nth roots of unity is
called the cyclotomic polynomial of order n.

THEOREM 6.2. A" — 1=1Tl;, Ds(2).

Proor: Each nth root of unity is a primitive dth root of unity
for exactly one divisor d of n. Therefore, it occurs as a zero of exactly
one ®,4(x) on the right, and it of course occurs in exactly one factor
{(linear) of x" — 1. »

PrOBLEM 6.1.  Find ®,(x), ®,(x), Pg(x), O3(x), Ps(x).

ProBLEM 6.2.  Prove that if £ is an nth root of unity, 1 + £+ 2
+eee " t=pf {=1and 0if { # 1.

PrROBLEM 6.3.  Prove that if n is odd, the field of the nth roots
of unity is the field of the (2n)th roots of unity.

PrRoBLEM 6.4.  Prove that ®,(x) is normal over the prime field
1T (cf. Problem 3.6).

7. FINITE FIELDS

DEFINITION 7.1. A finite field is a field containing only a finite
numper of distinct elements. Such a field is often called a Galois Field
and is usually denoted by GF (p") where p" is the number of elements

m it (cf. Theorem 7.1 below). The order of a finite field is the number
of elements in it.

THEOREM 7.1. The number of elements in a finite field F is
N . . .
p", where p is the characteristic of F and n € Z*.

PROOF:  Obviously by Theorem 1.3, the characteristic of F
cannot be zero and so by Theorem 1.1 must be a positive rational
prime p.

Let I1 be the prime subfield of F. Then F is a vector space over
1.1, and, if the number of elements in F is q, then there are at most g
linearly ir}dependent elements in F. Let n be the number of elements
N a maximum set of linearly independent elements, and let ay, a,,
S(; -e»\tgl be such a set. Then ay, as, . . ., a, form a basis of F over II,
2C Ty element of F can be expressed uniquely in the form c¢;q,
the Uni+("“"’ where the ¢, € H These elements are all distinct, by

Queness property of a basis. There are exactly p” of them, since
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¢; can be any of the p elements of [T Therefore F contuns exactly
p clements [

Tueores 72 I F s a finite field of order p" then every ele
ment of F 1s a zero of x*" — x

Proor  The nonzero of Fforma )| group
which 1s of order p* — | and so each element sausfies x*" ! — | =0
Therefore every element of F including zero1s azero of »*" —x  m

THEOREM 7 3 If F1s a fintte field of order p* then the mults
phicative group of F consists of the (p" — 1)th roots of unity over the
prime field of charactenstic p

ProoF  pfp — | and by Theorem 7 2 every nonzero element
of F sansfies x*" 1= 1—0 u

COROLLARY 7 1 Two finute fields of order p* are 1somorph ¢
CoroLLARY 72 The multiphcative group of GF(p*) 1s cyclc

THEOREM 7 4 For exch positive rational prime p and e ch
n € Z* Vafintefield GF(p )

COROLLARY 7 3 Let I-GF(p}) nd n€Z* Ifix) €
M{x]

(1) deg f(x) —n

(2) f(x) 1s srreducible in 11§ ]

PROBLEM 7 | Prove Theorem 7 4 (Hint let K be the sphitting
field of x**" x over Il By using problem 12 show that the zeros of
this polynomual form a field which must be & )

ProBLEM 72 Prove the three corollanes above

PrOBLEM 7 3 Prove let 1 GF(p) and let f(x) € MN[x]
Then[f(x)] "= fle™) V11 € Z*

DEFINITION 72 8 € K D Fas aprimune elemer t of the field
KA o erthe field F < K — F(6)

THEOREM 7 5 GF(p") 15 a simple extension of I1 1ts prime
field (which 1s GF(p))

PrROOF Since by Corollary 77 the multiphcative group of
GF{p"} 1s cychic 3 a generator 6 for st Then GF (p") — 11(8) [

THEOREM 76  The mapping «, defined by x* —x*™ 15 an
automorphism of GF(p") and these n qutomorphisms are distinct
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ProBLEM 7.4. Prove Theorem 7.6.

8. PRIMITIVE ELEMENTS

TueoreM 8.1.  (The Primitive Element Theorem.)

(1) p,o € K, afield containing the field F as a subfield,
(2) p, o are algebraic over F,

(3) o is separable over F=>3d 6 € K D F(0) = F(p, o).

Proor: Let f(1), g(x) be the minimum polynomials of p, o,
respectively, over F and let p=py,ps,...,pr and 0 =04, 03, . . .,
o, be the distinct zeros of f(x) and g(x), respectively.

Since, if F is a finite field, so is F(p, o) and Theorem 7.5 covers
this case, we may suppose that F has infinitely many elements.

Since the o are all distinct, the equation p, + xo, = p; + xo7,
A+ 1, has at most one root in F for each i, k, namely, (p, — p;)}/
(oy—ay), if this element € F. There are thus at most r(s— 1)
elements which can be roots of these (s — 1) equations. Let ¢ be
any other element of F. Then we have p, + coy, # p, + co, for all
tand for all k# 1. Let 6 =p,+ coy;=p+ co. Then 6 € F(p, o)
and so F(8) C F(p, o).

We shall now prove that p € F(8), o € F(8), and so F(p, o)
C F(#). Then we can conclude that F(6) = F(p, o).

Now o is a zero of g(x) and f(6 — cx), since f(8 — ca) = f(p)
=0, and these two polynomuals, g(x), f(6 — cx) € F(8)[x]. Further-
more, the only zero which g(x) and f(6 — cx) have in common is
o, since for the other zeroes o, . . ., o, of g(a) we have 6 — coy,
#psi=1,...,r;h=2,3,..., 5 and sof(0 — cay) # Ofork=2,3,

- -+ 3. Therefore, a g.c.d. of g(x) and f(# — cx) is x — o and this
must belong to F(8)[x], since f(8 ~ cx) and g(x) € F(8)[x]. There-
fore,crEF(O).Sincep=0—-co~,cEF, then p € F(9). ]

CoroLLarY 8.1. If Ty, T2, . . -, Ty are algebraic over F, and

"_l};i-"fm are separable over F, then 30 € F (7, ...,™n) D F(6)
- Tlre ey Tm).

f ’COROLLARY 8.2. 6 € K D F is a primitive separable element
of K over 1:“, where [K:F] = n ¢ the degree of the minimum poly-
omial of 6 is n &> 6 has » distinct conjugates over F.

PROBLEM 8.1, Prove Corollaries 8.1 and 8.2.

" PrOBLEM 8.2.  State carefully where, in the proof of Theorem
-1, the separability of o was used.
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ProBLEM 83 Use the method of the proof of Theorem 8 1 to
find primitive elements for each of the following fields (in each case
over the prime field) () Q(VZ V3) (b) Q(V3 1) (©) Q(VZ 1)
(d) @(VZ 1) Prove in each case that the element found 1s a pnmitive
element

DerniTion 8 1 If 6 15 1 primutive element of the field A over
the field F then a polynomual p(x) irreducible in F[x] and 2 p(8) — 0
1s called a Galots resohent of A over £ 1f K 1s the splitting field of
f(x) € F[x] over F p(x) 15 also calted the Glois resolvent of f(x)

ProBiEM 84 Find Gloss resolvents for each of the fields of
Problem 8 3

THEOREM § 2 Let F— F(#) be normal over F and f(x) of
degree n be the mimmum polynomtal of 8 over F Then J exactly n
F automorphisms of A f 6 1s sepirable over F and n, where ny1s
the reduced degree of f{t} I automorphisms of K if 6 1s mnseparable
over F

Proor  Since K1s normal over £ K contains all the conjupates
over F of # and these are the zeros of f(x) Since A — F(6) any
I automorphism of K 1s untquely determined by specifying the image
of 8 By Theorem 26 ¢ must be mapped onto one of 1ts n (or ,)
conjugates Therefore 3 at most # (or 1) F automorphisms But
the n (or ny) conjugates are distinct and so agan by Theorem 2 6
for each conjugate 7 an F automorphism of A Therefore 3 at least
n {or ny) F automorphisms Therefore exactly n (or n,) =

CoroLLary 83 1f A 1s the sphiting field of f(x} € F[x] over
F where f(x) 1s separable and trreducible in F[x] I exactly n F auto
morphisms of A where n = {K F]

CoroLLARY 84 If K 1s 4 fimte normal separable extension
of F of degree n over F I exactly n F automorphisms of A

ProBLEM 8§ Prove the Corollaries 8 3 and 8 4

9 THE GALOIS THEORY OF FIELDS

DeriniTION 91 A field K 1s a Galois extenston of a subfield
F < A 1s fimte normal separable over F

We shall often say briefly that K 1s Galois over F if and only if
A 15 a Galots extension of F
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DeriNITION 9.2, If K is Galois over F, the group of F-automor-
phisms of K is called the Galois group of K over F. If f(x) is a sepa-
rable polynomial of F[x], K its splitting field, then the Galois group
of K over F is called the Galois group of the polynomial f(1) [or of
the equation f(x) = 0].

TueoreMm 9.1.  If K is Galois over F, and L a subfield o/f K
containing F, then N(Q (L)) = L.

Proor: (cf. Theorem 5.5.) By Theorem 3.1, K is normal over
L, and by Theorem 4.2, K is separable over L, and so K is Galois
over L. We can, therefore, apply Theorem 4.4 with the F of that
theorem replaced by our present L. ]

THEOREM 9.2. If K is Galois over F, I, it is Galois group over
F, and A any subgroup of ', then Q(N(A)) = A.

Proor: By Theorem 5.5, Q(N(A)) D A,so0if Q(N(A)) # A,
then J at least one w € F 3 V1 & N(A), x*= x, while o & A.
This means, i.e., if o & A, there must exist some element a € K
32 «¥=qa while for at least one Ay € A, a* # a. Then a & N(A),
while « € N(Q(N(A))). But, by Theorem 9.1, N(Q(N(A))) =N,
(A). Therefore, no such w exists and so Q(N(A)) = A. n

THEOREM 9.3. If K is Galois over F, I' the Galois group of
K over F, if the subfield L O F belongs to the subgroup, A, then the
order of A is equal to the degree of K over L, and the index of A in
I'is equal to the degree of L over F.

PROBLEM 9.1.  Prove Theorem 9.3.

. ProBLEM 9.2.  Verify Theorems 9.1, 9.2, and 9.3 for the split-
ting fields of x* — 2 and x* — 2.

THEOREM 9.4. Let K be Galois over F. Then two subfields
Ly, Ly of K, each containing F, are conjugates over F < Q(L,), Q(L,)
are conjugate subgroups of I, the Galois group of K over F.

ProoF:  Let Ay = Q(Ly), Ay = Q(L.).

Consider the implication =>. By hypothesis,da € I' 3 L,*= L,.
LetA € A,. Then V1 € L, x*=x. Lety, € Ly, andy= ' =x, € L,.
Then we have yla‘lm =xr= () =x=y, = aha € A,, VA
€ Aw. Similarly, VX' € A,, aN'a™ € A,. Therefore, a~'A,a = A,.

Now consider the implication <. By hypothesis, 3o € T D a!
Ar=A;. Now o maps L, onto some conjugate subfield L. Let y € L



158 Fuelds

and v, =32"' Then YA E A,, y"_'“_°=x," =x,*=) Therefore,
Ly=N(\;) D L Therefore L™ D L' But, since A, and 4, are
conjugate, they have the same order Therefore, by Theorem 93,
Lo =L,, L= L, Therefore, L, and L, are conjugate .

Turorem 95 Let A be Galois over £ A subfield L of K 15
normal over F < { coincides with its conjugate subfields under all
F automorplusms of A

PronLEM 93 Prove Theorem 95 (Hint use Theorem 26
and the pertinent defimtions )

THEOREM 96  Let A be Galois over F A subfield L of A 1s
normal over F <2 Q(L) 1s a normal subgroup of I the Galois group
of A over F A subgroup A of I' 1s normal & N( 1) 1s normal over ¥

ProBLEM 94 Prove Theorem 9 6 using Theorems 94 and 9 5

ProBLEM 95 Prove Theorem 9 6 by using the method of the
proof of Theorem 94

ProBLEM 96 Examine the sphtting fields of «* — 2 and xf -2
1 light of Theorems 93 4 5 6

THECREM 97 Let A be Galots over £ Let L be a subfield
of A normal over F and let A= Q(L) Then the Galos group of L
over F 1s 1somorphic to [/ where | 1s the G Wois group of A over F
\ 15 the Galois group of A over L

ProBLEM 97  Prove Theorem 9 7

ProBLEM 98  Apply Theorem 97 to the sphiting fields of
f—2and ¢*—2

10 THE CYCLOTOMIC FIELD
The cyclotomuc field of order n was dehned earlier for a prime field I1
We now generalize that

DeriniTION 101 The field C, 1s called the ¢yclotomic exten
ston field of order n over the field F < C, 15 the smallest field con
taiing F and all the nth roots of umty

We shall throughout the rest of this chapter assume that the
charactenistic of F does not divide n

THEOREM 101 C, exists for each field F and 15 a finste normal
and separable extension of F Further the Galors proup of C, over £
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is isomorphic to the multiplicative group of the reduced residue classes
modulo n.

Proor: We leave the proof of the first statement of the theorem
to the reader as an exercise.

The primitive elements of C, over F are the powers, {*, where
{ is a primitive nth root of unity and k € Z* 3 (k,n) =1, and so
C,= F ("), (k,n) = 1. Thus we can determine each F-automorphism
of K = F({) by determining the image of {, which must be a primitive
nth root of unity so we have a 1-1 mapping of the F-automorphisms
onto the reduced residue classes modulo n. Further, if we let o, be
the F-automorphism ¢ & ¢*, for (k, n) = 1, we have oy «, determined
by (= ()" =", where (h,n) =1, and if we let kh = w mod n,
then (w,n) =1, and " =, and so we have the desired auto-
morphism. "

CoroLLARY 10.1.  The Galois group of C, over F is the direct
product of cyclic groups.

DeriNiTION 10.2. The field K, Galois over the field F, is
called cyclic over F < the Galois group of K over F is cyclic. In
accordance with Definition 9.1, we call a polynomial or an equation
cyclic & its Galois group is cyclic.

CoroLLARY 10.2. If p is a positive rational prime and F is a
field of characteristic different from p, then C, over F is cyclic over
Fand [C,:Fllp— 1.

PrROBLEM 10.1.  Prove the first statement of Theorem 10.1.
PrOBLEM 10.2.  Prove Corollaries 10.1 and 10.2.

LemMA.  f(x) = x" + apoyx" '+ -+ ayx +a, € F[x], Fa
ﬁel.d,‘f(,\-) =(x—a)(x—a,) -+ (x— ) in K[x], where K is the
splitting field of f(x) over F = ayas « - - oty = (—1)"a.

PROBLEM 10.3.  Prove the above lemma.

THEOREM 10.2.  Let p be a positive rational prime, and let
ff-\') =x"—aqa, where a € F, a field, a # 0. Then the splitting field
K of f(x) over F contains the cyclotomic field C, over F, and exactly
one of the following statements holds:

. () x"—~qahas azeroin F.ie.,db € F D b?=q. Then x» — a
15 reducible in F[x] and C,=K:
(2) x” — g does not have a zero in F. Then x” — « is irreducible

'é‘ F[1] and also in C,[x]. Further, it is normal over C,, and K =
nl@), where « is any zero of x* — a.
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Proor Lete, o, oy, be the zeros of ¥ — a ind @ ny one
of them Since @ # 0 o # 0 ind we have since a =«

() - ()= (=)

- (5 .,_)
a «a
feting ) = xfue we have

-8 (%)

and so « /o re the pth roots of umty Therefore K 3 C,

Further if £ 15 a pnmitive pth root of umty we hive a ={a
-1 p remembenng the a 1f necessary

Case (1) Here some one t least of the w € F nd we choose
that one as a and then by the above allthe @« € C,and K C Cp
Therefore A —C

Case (2) Here nonc ofthe @ € F Suppose v —a — £ {x)h{x)
and we may suppose that g () 1s irreducible in £{x] say g(x) —x*
+a ¢+ +a s+ a, where A < p Then by the above lemma
* a, would be 2 product of & of the « and so by the above represen
tionof the @ +a — "¢* Sincek <p (A p)—i mdsoIs €2
3 k- 1+1p ind since « — ¢ we would have (£ a) — {Mac  and
30 since & # O the zero ap, — "™ —(+¢ Yo' 15 in F contrary to our
hypothesis that none of the @ € F Therefore x* a 10 this case
1s ureducible in F[x] and so {F(a) F]—p Now (f m the above
discusston we had assumed that the factonzation of v — a were 1
C,[x] we would have concluded that « € €, and so F(a) C Cp
Then we would have the degree of C, over F a multiple of p by Theo
rem i3 3 of Chapter 5 while by Corallary 101 [C, Fllp—1 acon
tradsiction  Hence 1n this case x* — « 1s also irreducible n C,[x]
Hence x* — a 1s clearly normal over C,, so A = Cpla) =

-3

11 PURE EXTENSION FIELDS

DEeFINITION 111 A polynonual (equation) € F[x] 1s called
pures=>itus of the form v" — g (x*—a—0) a€ F n € Z*

An extension field L of afield A s called pure & L — F (8) where
815 a zero of a puve irreducible £ polynomial

THEOREM 11 ] Let p be a posttive rattonal prime and F a
field with characterisic # p which contams the pth roots of unity
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over F, then if K is a pure extension of degree p over F, K is normal,
separable, and cyclic over F.

ProBLEM 11.1.  Prove Theorem 11.1.

TueoreM 11.2.  Let p be a positive rational prime, and F a
field with characteristic ¥ p which contains the pth roots of unity
over F, then, if K is a normal extension of degree p over F, K is pure,
separable, and cyclic over F.

Proor: Since [K:F] =p, a prime, and K is normal over F,
the Galois group is of order p and so is cyclic; let o be one of its
generators. Since p # characteristic of F, K is separable over F, and
so d a primitive element 8 of K over F. First, let us suppose that 9 a
primitive pth root of unity, {, @ ao= 0+ {6° + 20" + - - - + grige”!
#0. Then o= 60"+ {6°°+ - - - + ("0 = {"'a, and generally, o’
= {7a. Thus the p conjugates of « are all distinct (still assuming
a # 0), and so the minimum polynomial of @ is f(x) = (x — a) (x — {&)
*+« (x—{"'a). Thus as in the proof of Theorem 11.1,f(x) = x*? — o
and since f(x) € F[x], o” € F and so F(a) = K is a pure extension
of F.

Now we must show that ¢ can be chosen so that « # 0. Let us
suppose that it is impossible. Then for each choice of a primitive
pth root of unity, & = 0. The pth roots of unity are all given by Z',

1= 1,'2,. ..,p— 1, where { is any one of them. So we have the p — 1
equations 6 — 767 + (20" + - - - + P07 =0, 0+ 26 + {602+
PP =0, L g e T =0, e,

P~ k A . . :
?:x=o §'f0 = 0. On multiplying the ith equation by {~*, summing over
I, and interchanging the order of summation, we have

p=1 /p~-1 A
E ( C:(A—t)) g°" = (.
h=0 Mi=0
Now Z'0-0 = either — 1, if k # t mod p, since then *~ is a
zero of @(x) ="' g2t .. -+ x+1lorp—1,if k =t mod p,
since then each term is equal to 1. Thus, the last double summation
gives us 3% (—1)6°" + pe' or p6' = 3770 6°", but since the charac-
teristic of F is not p, ¢°' is the same forall t=1,2, ..., p — 1. This
lSl tmpossible, since 6 was chosen as a primitive element of K, and
Y rgns through with ¢ all F-automorphisms of K. Therefore, it is
possible to choose { so that a 5 0. -

. dTl']e above theorem implies that a field K satisfying the given
Onditions can be obtained by adjoining one pth root of a, where a is
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some element of I Now we constder a theorem 1mplying something
similar about roots of umty

THeorem 113 Let p be a positve rational prime and F a
field whose charactenstic 1s 0 or a prime greater than p Then for the
cyclotomic field C,, over F 1 a finite sequence of fields Lo, Ly, s L
3F=L,CL, C CL2C, > 1., 1s pure, normal, and of
prime degree over L, += 1,2, .

Proor  The theorem 1s obvious if p=2, since then C, = F

‘We now assume that the theorem 1s true for al) pnmes less than
p and for all fields £ satisfytng the conditions of the theorem Let d
be the degree of C, over F Then by Corollary 102, d|p—1 Letd=
PP i be the factonzation of o nto (not necessanly distinct)
primes Then the charactenistic of F > p; 1=1,2, A and so the
nduction hypothesis holds Therefore 3 a fimite sequence of fields
F=lL,CL C C L, 2 C, 1w which {,1s pure, normal and

of prime degree over L., =12 r, Then starttng from L,,, we
get another sequence of fields L, ; C L,,.. C cL,DC, and
C,, (Naturally C,, over L, contains C,, over F ) Conunuing thus, we
get finally a finte sequence of fields F= 4, C L, C C L, where
Ly DCpfori=1,2 A over F in which each L;1s pure normal
and of prime degree over L,  forr=1 2 n

Now let €, be the cyclotomic field over [, By Corollary 102
the Galois group | of C, over L, 1s cyclic Therefore by Problem 149
of Chapter 3 the Galots group of C,, over L,, 15 solvable, so 3 a finite
sequence of normal subgroups of T T=H, D H, D D Heny=
{1} each of which is of prime index tn the preceding Hence by The
orem 9 4, the subfields N(H,) = L,, ., are such that each 15 of prime
degree (=some p;} over the preceding field and lastly by Theorem
112, since L,, and so a fortion L, ., contains all the p,th roots of unity
fori=1,2, A each field 1s pure over the preceding Thus we have
F=L,CL C CL,ClyuC cL,=C.DC, over F
and each L; s pure, normal and of pnime degree over L; ; for 1=
.20 .r ]

12 SOLVABILITY BY RADICALS

By solving an equation by radicals, one naturally means expressing
the roots of the equation 1n terms of the coefficients of the equation
vstng addition subtraction multipficatton, division and the extraction
of roots of expressions previously formed For example, an expression
which might anse in the process could be something hike {5 — [3/2 —
(4+T712)u8]18}17  Considertng this as occurring from an equation
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with coefficients € Q, we would first adjoin 7'%, getting then a field
which contains 4 + 7'2. Then to that field we adjoin (4 + 7'/2) V8 getting
a new field containing 3/2 — (4 + 7"2)18, and so on. Thus at each step
we adjoin a root of a pure equation, i.e., of the form, x" — a = 0. Lastly,
if in adjoining «'™, n is not a prime, say n = pq, where p and g are
prime, we can consider it done by two consecutive adjunctions of
roots of pure equations of prime degree. Of course, if 1 is the product
of 4 primes (not necessarily distinct), we do it by A adjunctions, each
of prime degree.

TuaeoreM 12.1. (1) If an irreducible equation f(1) = 0, where
f(a) € F[x], is solvable by radicals, then the Galois group of the
equation is solvable;

(2) if the Galois group of the equation f(x) = 0 is solvable, then
the equation is solvable by radicals. In both cases, the characteristic
of F is to be greater than any prime occurring as an index of a radical
or as an index of a group of a composition series, or else the character-
istic is to be zero.

Proor: (1) As remarked above we may assume that all roots
taken are pth where p is a prime. Let p,, ps, . . ., px be all the primes,
entering in the expression of the roots of the equation as p,th roots of
elements in successive fields. If we adjoin successively to F the p,th,
path, .. ., p,th roots of unity we get a succession of fields F = F, C
FyCF,C---C F,, each of which by Theorem 10.1 is cyclic over
the preceding field. We now adjoin successively all the p,th roots of
all other elements necessary in the expression of the roots by radicals.
By Theorem 1.2, each time we get a pure, separable, cyclic, normal
extension of prime degree over the preceding field. Thus a chain of
fields F=F,c F, c -+ CF,CFC---CF,=W, where
each is normal over all those preceding. The final field W contains all
the roots of f(x) = 0 and is normal over F, and it contains the splitting
field K of f(x). Now let Q be the Galois group of W over F. Then,
corresponding to the chain of fields given above, we have a chain of
subgroups of O, Q = I, DI, D DTI,=1{}, and each of these
Su_bgrouPs is invariant in the preceding and [/T,4, is cyclic and of
prime order. To the field K belongs some subgroup of Q, say A, and
by Theorem 9.6, A is an invariant subgroup of 0. We can find another
(perhaps the same if A = T, for some i) composition series for () which
Cont_ains A and whose quotient groups are isomorphic to those of the
otiginal composition series, D =A; D A; D -+ DA D --- DA,
={1}. By Theorem 9.7, I'/A is the Galois group of K over F, and has
as composition series Q/A, Ay/A, - - -, A/A = {¢}, and by Theorem 4.4
(3) of Chapter 3, the quotient groups of this composition series are
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1somorphic to the corresponding ones of the preceding composition
senes (for f2) Hence they all are¢ cyche nd of prime order There
fore the Galars group of A over F 1s solvable "

(2) Let A be the splitung field of f(x) and I 1ts Galois group Let
I 50,2 D T, ={t} be a composition sertcs for [ and F = F,
[= 2 = C Fn= A be the subfields of A belonging to these sub
groups Finally let ¢, q. qy be the pnimes which are the orders
of the quotient groups of the composition senies By the same process
used above in the latter part of the proof of (1) we can modify the chain
of fields of Theorem 113 to get 4 chun of fields whose fin1] one 1s
Cuforp=q —12 /t Now obwviously adjormng 1 root of a
pure equation can be done by adjoining a single radical Thus we can
express the ¢ th roots of umty by means of radicals Let us adjoin

these to F obtaing a field N which contuns C, fore=1 2 h
Stnce F 15 norm) over F , {und hence over F) ind of prime degree
I8 =12 h3F —F ,(8)and# 5 a zero of a normal poly

nomiih over F g {r) Now enher 4 x) s reducible in N[x} ar which
cise all the zeros of £ (v) € N or & {x) 1s irreducible m N{x} n
whichcise N — N ) 1s by Theorem 117 a pure extenston and so
solvable by radic1ls Proceding thus we reach N{¢ 8 6y} each
of whose elements can be expressed 1 the destred manner Since
N(e 8, 6,) A we have the desired result [

PROBLEM 2 | Fill 1n the details of the first part of the proof
of (2)

Any automorphism of the sphtung field of 1 trreducible equation
f(x) — 01s completely deternned by specifying the (m iges of the roots
of the equation and since those tmages must be roots of the equation
any such wutomorphism 1s determuned by 1 mapping of the set of the
roots of the eqution onto 1tself 1e by 1 permution of the roots of
the equation In the case of the equitton v — 7 —~ 0 we hive found
that the permutat te the whole symmetnic group of degree
3 and order 6 Ingeneru of course the set of permutations of the roots
will be a subgroup of the symmetric group of degree equal 1o the
degree of the equation Beaning this m mind work the following
€XErcises

ProBLeEM 122 Prove that every equation of degree 2 3 and 4
1s solvable by radicals

PROBLEM 123 Assume the following theorem The Galois
group of the general equation of degree 1115 S, Prove that the general
equation of degree n 1s not solvable by ridicisif > 4



Chapter 7: Linear Mappings and

Matrices

In this chapter we consider linear mappings of one general R-module
mto another. Then we consider the special case in which the R-modules
are vector spaces and most of the chapter is devoted to that. In the

process, matrices are introduced and various canonical forms are
studied.

I. LINEAR MAPPINGS OF MODULES

Throughout this chapter, all R-modules are to be unitary unless some

remark is made to the contrary, and they are to be left R-modules if
R is not commutative,

DEFINITION 1.1. A homomorphism of an R-module L into
(onto) an R-module M is called a linear mapping of L into (onto) M
(cf. Definition 3.4 of Chapter 4). A linear mapping of an R-module L
Into itself is called a linear transformation of L if it is an automor-
phism of L, a nonsingular linear transformation of L.

THEOREM 1.1. If o is a mapping of the R-module L into the
R-module M, then o is a linear mapping < Y\, w € R,V a,b € L,
A+ pb)a = A(aa) + p(ba).

ProBLEM 1.1.  Prove Theorem 1.1.

PROBLEM 1.2.  Prove that if « 1s a linear mapping of L into M,
then Y1\ € L, VA € R, (A\p) (he) = Mp(xa)) = A((px)a).

T_h_e product of two mappings for sets of any kind is given by
Def}mﬂon 1.2 of Chapter 2. The sum of two mappings can be con-
:l'eg‘entl}’ defined only if the set in which the images lie has addition
'lsdn:d nit. In the present circumstances, we do have addition present
©7 30 We may define the sum of two linear mappings in a manner

similar to that used in Definition 13.1 of Chapter 3.

DErINITION 1.2, If a, B are linear mappings of the R-module
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L nto the R module M then a+ 8 and ~a are defined by Vx € L
x{a+B)=xa+xB and Vx € L x(~a) ——(xa) Fmally a—-8
—a+t (=g)

THEOREM 12 « 8 sre linear mappings of the R module L into
the R module M = a+ 3 «— B —aare hne yw mappings of Linto M

PROOF Let x u€R a b€ L Then

(Aa+ pbYa+B) = (Aa + pb)a+ (Aa+ ub)B
= Maa) + plba) + AMaB) + n(bf)
=A[(aa) + (af)] + p[(ba) + (68)]
={ata+ 8} + ulble+B))

(Aa + pb)(—a) = —[Maa) + plba)]
= M=1)(aa) + p(=1) (ba}
—A[—(aa)] + ul (be)}
—Mat-a)] + plb(~—a)]

That e — 8 1s hnear follows by combimng the above vesults "

PROBLEM | 3 Give a Justification for each step 1n the above
proof

THEOREM 1 3 If « B y are linear mappings of the R module
L mto the R module A/ thena+ (B+y) —(a+8) +7y

ProsLEM 14 Prove Theorem 1 3

Tueorem 14 The set E of all linear mapptngs of an R module
L into an R module M 1s a group with addition as the law of compost
tion and a left C module where C s the central of R with ra defined
as follows V€ R YxEL x(rv) — (r)a

ProoF  x0 =10 1s clearly a linear mapping and 1s the neutral
element of addit on Hence the first statement follows from Theorems
17and 13

From the definition given in the theorem for ra we must have
Ax(ra)} = A[r(xa)] = (Ar)(xa) and also Alx(ra)] — (Ax)(ra) =
rl(A)a] =r[Axa)] — (£A) (xa)} for dl A € R Now (Ar)(xa) will
equal {rh)(xa) for each » € R only if we have xr — rA This means
that:f r € C the central of R then it will be true Then we shall have
(Mt + pb)(ra) — [r(Aa + ph)]e — r[Maa) + p(ba)] — (rA)(an) +
(p2) (ba) = r{(Aa)a] + r[(#b)al — (Aa)(ra) + (ub)(ra) =>ra1s
linear

Ersan R group since x{{r+ s)a) — {r+ s) {xa) — rixe) + s{xa)
—x(ra} + x(sa) = x{(ra) + (sa)] so (r+s)a— (ra) + (sa)

That the second condition of Definition 4 1 of Chapter 4 1s satis
fied follows from choosing C as the central of R []
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COROLLARY 1.1.  E is an R-module if R is commutative.

THEOREM 1.5. « is a linear mapping of an R-module L into an
R-module M, B is a linear mapping of M into an R-module N = af3 as
defined in Definition 1.2 of Chapter 2 is a linear mapping of L into N.

ProOF: VYA, u € R,Ya,b € L, (Aa+ ub)(af) = [Aaa) +
w(ba) 18 = A (aa)B] + nl(ba)B] = A[a(eB)] + ulb(aB)]. n

COROLLARY 1.2. Let L,M, N, P be R-modules and «, 8,7y be
linear mappings of L into M, M into N, N into P, respectively. Then
(aB)y = a(By) is a linear mapping of L into P.

Proor:  This follows immediately from Theorem 1.1 of Chapter
2 and 1.5. [

CoroLLARY 1.3. The set of all linear transformations of an
R-module L is a subsemigroup under multiplication of the semigroup
of all mappings of L into itself.

CoroLLARY 1.4. The set of all linear transformations of an
R-module L is a ring with operators C, where C is the central of R.

CoROLLARY 1.5. If R is a commutative ring with an identity
element, the set of all linear transformations of an R-module L is an
algebra over R.

THEOREM 1.6.  The set of all nonsingular linear transformations
of an R-module L and multiplication form a group.

ProBLEM 1.5. Prove the above four corollaries.
ProBLEM 1.6. Prove Theorem 1.6.

ProBLEM 1.7.  Letting x= (x;, %, X3, %) € L=V,(Q), y=
(1,2, ¥3) € M =V3(Q), 2= (21,22, 23) € N =V3(Q), w= (w1, wg)
€ P=V,(Q), and «a, B, y be defined by xa =y, where y, = 3x, + 4x,
=+ TG Yo =X — 2%, + 3x3 F X5, Ya= X F X x5+ x4 YB=12,
where z; = 4y, + 3y, — Ty3, 2o = y; + 2y2 + 3yy, 23 = =2y, + 4ys + y5;
y = w, where w =z, + 4z, + 3z, wo = 2z, — 3z, + 23, prove that «,
B. v are linear mappings.

ProBLEM [.8.  Verify Corollary 1.2 for a, 8, y of Problem 1.7.

2. MATRICES

lp the. case of R-modules with finite bases, linear mappings can be
gl.ven m' a particularly simple manner. We shall henceforth deal only
with unitary R-modules with finite bases and so by Theorem 5.5 of
Chapter 4, we may without loss of generality, deal with V,(R). We
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shall associate with each mapping a set of elements of R and this set
will determine the mapping completely For this purpose we let
S T U V be respectively the sets consisting of the first & m n p
positive rattonal integers We shall further suppose that henceforth
R 1s 1 commutative ning with an identity element

THEOREM 21 The R module R** 7 (cf Defimtion 72 and
Theorem 7 1 both of Chapter 4) and the R module £ of Theorem | 4
of afl linewr mppings of F (R} into I ,(R) are 1somorphic

PROOF  Lete; e, ey be 1 basis of § (R) wd f, f; Sn
be =z basis of I,,(R} A linear mapping of Vi(R) wnto V, (R} 1s of

course umquely determined by giving the images of ¢, €y Let
« be 1 himear mapping of ¥u(R) mnto V,.(R) Then e — El ayfy
=12 h a;; € R Thus to each such « we have an element

(a5 sjer € R T We shall prove that this mapping of £ into R%*T
15 1 1somorphism

The mapping «—(a ;) s determined above s5 onto for let
{a ;) € R *T We determine 1n element of L whose image 1s {ay;) as

follows let eax— 2 a;f fore—12 ht This deterrines an
tmage for each basis element of V,(R) Now for any element x of
VaR)d ¥, 1 X € R D x—3L,xe <o that the image of x

under & f « 15 to be hnear must be given by v~ £} x{ea) Thus
we have determined the mapping a such that under the mapping 1n
question (ay;) 15 the imige of a
This mapping 1s | 1 since if e — {«;} and B — (a)5) then Vx
€ Vp(R) va=xB andsoa=8
Nowleta© (a ;) g (by) Then

et @) —eatef—Sal+ S but— Slayt+ buf

Therefore a+ g« (ay + by) — (ay) + (by)
tastly if r € R then

era) =r(ea) = rSa,f— Stra )f

and 50 ra © {(ray) = r(ay) [

PrOBLEM 2 1| Venfy the preservation of additton under the
1somorphism of Theorem 2 | for a of Problem [ 7 and & given by
X8 =3 —~ (3, 32 3a) Where 3, — 7x; + 5x, + 315+ 554 32— X, + 4x,
=2+ Txy 33— 26+ 20— 3x5 — dx,

DEeFINITION 2 1 Let {ay) € R™ and (by) € R™ Then
(ag)  (bp) = (Z"vaybu)
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THEOREM 2.2. The 1-1 mapping in the proof of Theorem 2.1
provides a 1-1 mapping of the linear mappings of V,(R) into V,(R)
onto the elements of RS*7, those of V,(R) into V,(R) onto the ele-
ments of R7*V_ those of V,(R) into V,(R) onto the elements of R¥*Y;
further, in this 1-1 mapping to the product, in the usual sense, of a
linear mapping of V,(R) into V,,(R) and a linear mapping of V,,(R)
into V,(R) corresponds the product, in the sense of Definition 2.1,
of the image elements of R¥*T and R™V.

COROLLARY 2.1. A € RT, B € R™, C € R"W=A4AB €
RS, BC € R™", A(BC) + (AB)C & R5*".

We leave the proof of this theorem and its corollary to the reader,
but of course the method of proof is to use, as far as proving asso-
ciativity is concerned, Theorem 1.1 of Chapter 2. Again we have a
case in which associativity is easy to establish by relating a system to
a set of mappings and using the fundamental result that the associative
law holds for mappings. To prove associativity of mairices in other
ways is perfectly feasible, but tedious.

THEOREM 2.3. The algebra of linear transformations of V,(R)
is isomorphic to the algebra RS*S, with multiplication defined in
Definition 2.1.

PrROBLEM 2.2.  Prove Theorem 2.2 and its corollary.
ProBLEM 2.3.  Prove Theorem 2.3.

' ProBLEM 2.4.  Illustrate Corollary 2.1 with the matrices of the
linear mappings «, 8, v of Problem 1.7.

DEFINITION 2.2.  An element of RS*T is a matrix with elements
in R if addition and multiplication, and multiplication by elements of
R are defined as in Definition 7.2 of Chapter 4 and Definitions 1.2
and 2.1. The algebra R*S of Theorem 2.3 is called the total matric
t{lgebra over R of order I?, and is denoted by A,. The matrix of a
linear mapping o of V,,(R) into V,,(R) relative to the bases (e;) and
(i) (?f Vi(R) and V,,(R), respectively, is the matrix corresponding
to o in the isomorphism of the proof of Theorem 2.1. The rows of the
matrix 4 = (a;) € RS*T are the elements (diy, dizy - « «» i), § = 1.2,
-+« h and the columns of the matrix 4 = (a;;) € RS*T are the ele-

ments (ay,, @y, . . ., ay;),j=1,2,...,m, and these are often written
as
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Since the seis S, T, U, ¥ are ordered sets, we shall usually take
advantage of that fact and wnte matrices in an array which is really a
double sequence

Prostes 25 Fund the sum, product in both orders of

23 4 t o2
( 12 3) and (—3 15
-1 11 237

PROBLEM 2 6 Find the zero and 1dentity elements of Af,, the
additive 1nverse

TuroreM 24 If o 15 a hoear mapping of V,(R) noto V,,(R),
the set of image elements is a submodule of V,,(R), and the set of
elements of I,(R) mapped onto 0 of V. {R) 1s a submodule of V,(R)

ProBLEM 27 Prove Theorem 24 (Himnt among other things,
use theorems about homomorphisms of groups with operators )

DeFiNiTION 23 The first submodule of Theorem 2 4 15 called
the range of « and the second the mull module of a (null spuce if R
1s a field )

3 RANK

We now suppose that R s a field £ and so we deal with vector spaces
(since we have previously specified that we were dealing with umtary
R-modules)

DefiNITION 31 The row {column) rank of a manx {(a;) 1s
the of the space by the rows Y of (ay,)
The rank (nutlity) of a hinear mapping « of one vector space Into
another 1s the dimension of the range (null space) of a

PROBLEM 3 | Find range null space rank and nullity of the
mapping « of Problem { 7

ProBLEM 32 Find row rank and column rank of the mapping
of Problem 3 t

TueorCM 31 The rank of a hnear mapping « of Va(F) into
Vu(F) 15 the row rank of any matnx 4 of a

ProoF Let e = I ayf,, where e, L€, 18 a basis of
Va(F) and £, Jfwis abasisof V,,(F) Let the row rank of 4 = (a,5)
be r and suppose that {(a,, diz +Qpa) }emp 2 18 free, renumber-
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ing the rows of A if necessary. Then the other rows of A are linearly
dependent on these r rows. Let

(abh Upzy - o - abm) = Cbl(alh CEENEY alm) +--+ cbr(arh ey arn)

forb=r+1,... h Then

m m

cp(ey) ++ -+ cbr(era) = Cu1 2 al}f; S 2 arJfJ
J=1 =1

= (Cptyy+ - - F Cpeti)) 1+ - -
+ (Cblalm + oot Cbrarm)fm
= ablfl +oe et abrfr= G,

forb=r+1,... h. Therefore, at most r of the e« are linearly
independent. Therefore, rank of @ < row rank of 4.

Let the rank of a be 5. Then there are s of the e,a which are linearly
independent while the remaining are dependent upon them. We may
suppose, renumbering the e, if necessary, that they are e;a, . . ., e
and that for b > s, ey = dy(e@) + + - - + dys(e,). Then we have

m m m

Cp= E“b}f] = dy, zaufj i dbsE(’SJfJ
J=1 =1

J=1
= (dblall 4+t dbsael)fl oot (dblalm +ee+ dbsavm)f;ns

and since the f, are linearly independent, a,, = dyay, + - - - + dpsas,
which implies that (au,. . . dpm) = dpy(Ay1s o o oy i) + 0 0+ dys
(agv. . . aey), for s < b < h. Hence, there are at most s linearly
independent rows of 4. Therefore, row rank of 4 < rank of «. There-
fore, row rank of 4 = rank of a. n

ProsLEM 3.3.  Verify Theorem 3.1 for «, 8 of Problem 1.7.

THEOREM 3.2. A linear transformation « of V,(F) is non-
singular < rank of a = A.

Proor:  Concerning the implication =>: Since « is an automor-
phism, the range of @ must be V,,(F) which is of dimension /, and so
rank of o« = /1.

Concerning the implication<=: Since the rank of «is /1, the image
of ¥,(F) is a vector subspace of V,(F) of dimension /4. Then by
Problem 6.4 of Chapter 4, this subspace is V,(F). Therefore, « is
onto. To prove that « is 1-1, let x,y € V,(F), x=32",1,e,, y=
Stive. Then ie=ya=>3L, (x,—y)e.a=0. But the e,a are

linearly independent, so r, =y and x =y. Therefore, « is an auto-

morphism. -
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ProsLCM 34 Show that 3, ==3x, + 4xs — S5x4, 3, =Xy — 20, — 3,
V3= 1, + x; + Xx; 15 a nonsingular hnear transformation of V,(Q)

Prosieym 35 Givene 3, =24+ 30— du,3=X+x, +2x,,
33 = 3x, + 4v; ~ 2xy, 2 hinear transformation of V4{Q) Find its range
and nullity directly, and then by using Theorem 3 1

THEOREM 3 3 If @ 1y a linear mapping of Vy{F) mto V,(F),
then the rank of a plus the nullity of @ = dimension of V,,(F) =/

PrOOF Let A be the null space of «. and &2 the range of &
By Problem 6 11 of Chapter 4, there exists a subspace & of V,(F)
B Vy(F) 15 the direct sum of A and & By applytng Problem 6 6 of
Chapter 4 we have dim A" + dim & = dim V,(F) = /i So if we can
show that & has the same dimension as & the theorem follows

Each element x € V, (£} 158 umquely expressible as x=1+ gz,
wherey € A and z € & Then va =1a + 2= 0+ za 50 a Maps
Kinto £ If fa =z then (7, —z)a=0and soz, —z; € A and
since & 1s a vector space z, — z; € & andsosince A N & = {0},
2=z Therefore a gives a I-1 mapping of & 1nto & 1t 1s obviously
an onto mapping Therefore a provides an 1somorphism of & and &
and so by Problem 6 7 of Chapter 4 & and 42 have the same di
menston »

4 CHANGE OF BASIS

We have thus far constdered linear mappings relative to 4 fixed basis
e n of V() and a fixed basis f, S of Vo (F) Now let
ey e, be another basis of V,(F) Then e, = I, pye; where
the py, € F «nce the ¢; form a basis Now since the ¢, form a basss,
the ¢; must be expressible 1n terms of the e, 1e Iry EF D¢
= X4 rpen Then combinmg these expressions we have

hoon ryh
=3 ne= ( ’i )('
i ,Z, 12 e ;’. Zrn e
Now the e, form a basis and 5o are linearly independent Hence, we
must have S pyrpe=38,=11fr=Aand Of r # A
ProBLEM 4 | Prove that the matnx / = (8,,), as defined above,
1s the neuvtral element of the mulipheative semgroup of Theorem 2 3
DEeFINITION 4 | If {e;} {e/} are bases of V4(F) and ¢,=

Ef (pue; - then the mainx (pg) 1s called the matrix of the ¢ relative
to the e,
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THEOREM 4.1.  Let (p;) be the matrix of the basis {e;} of
v,(F) relative to the basis {¢;'} of V,(F) and (r;) that of {e;'} rela-
tive to {e¢;}. Then (py) and (r;;) are matrices of nonsingular transfor-
mations and so are called nonsingular, and in fact are inverses of each
other.

THEOREM 4.2.  Let « be a linear mapping of V;,(F) into V,,(F),
{es}, {e;'} be two bases of V,,(F), with e; = 2, pye;’, {fi}, {fi'} be
two bases of V,,(F), with fi, = 2" q)fi’, and finally let (a;) be
the matrix of « relative to the bases {¢;}, {f;}. Then the matrix of «
relative to the bases {e;'}, {f5'} is (py)'(ay) (q3)-

Proor: Ifwelet (p;)~' = (ry;), we have

m

h h 14
ei/a= (2 l'L,-e,)a = 2 ry(ea) = z Iy E i
j=1 =1 i=1

k=1

/] m m m I m ,
=D Tu Y i Y, G’ = 2 (2 "u'(z aijkw))fw .
=1 w=1 k=1

k=1 w=1%‘y=1

CoroLLARY 4.1.  If {e¢;}, {e;/} are two bases of V,(F), e;
= 3! pye;, and if « is a linear transformation of V,(F) with matrix
(a,) relative to {e,}, then « has matrix (p;;) ' (ay) (py) relative to {e;'}.

ProsLEM 4.2.  Considering the linear mapping « of Problem
1.7 as relative to (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1) as a
basis of V,(Q) and (1,0,0), (0,1,0), (0,0,1) as a basis of V5(Q),
find the matrix of this mapping relative to (1,1,0,0), (1,0,1,0),
(1,0,0,1), (0,0,1,1) as a basis of V,(Q) and (1,1,1), (0,1,1),
(1,0, 1) as a basis of V;(Q).

ProBLEM 4.3.  Considering the linear mapping 8 of Problem 1.7
as a linear transformation of V,(Q) relative to (1,0,0), (0,1,0),
(0,0, 1), find the matrix of 8 relative to (1,1,1), (0,1,1), (1,0, 1).

PrROBLEM 4.4.  Prove the product of two nonsingular matrices
is nonsingular.
5. COORDINATES

' I?EFINITION 5.1. Ifey,e,,..., e,is abasis of V,(R), where R
1sa rlpg, if x € VI:(R) , and ifx= E{'—;l Xi€;, then X1y Xoy o« oy Xy ATE the
coordinates of x relative to (or with respect to) the basis {e;}.

TH.EOREM 5.1, If {e;}. {f;} are bases of V,(R) and V,(R),
respectively, R a ring, if « is a linear mapping of V,(R) into V,,(R)
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with matrix (a;;), then x € V,(R) 1s mapped onto y & Va(R) where
sy=Slxag, y=1,2,  ,m and y= 0Oy ,ym}» and where
Y1, Xgy WXy and 3y, y2, ,3m are, respectively, the coordinates of
xandy

PROOF Y € V4(R) =>x=3L, xe.x € R Then

’ A PR
y =ra= (S rea= Satem) =S 0 S as
= = SA

"o A
= (Exmlu)f, ==Y Ky -
N =

CorotLary 51 Each ) € V,(R), and 3 € range of a1s a
linear combination of the rows of the matnx (ay)

COROLLARY 52 The rank of the linear mapping @ 15 equal to
the row rank of the matnx (ay) of &

CoroLLARY 53 The equations SL, xva,=0,/=12, ,m
always have solutions other than (D 0 iih>m

ProBLEM 51 Prove Corollaries § | and 52

PROBLEM §2  Use Theorem 3 3 to prove Corollary 53

THEOREM 52 For a ltnear mapping a of V,(F) mto Vo(F),
where F 1s a field T bases of V,(F) and V.(F} 2 selative to these
bases, « has matnx

———
1o 00 0
01 00 0
00 1o [
0 090 [
0 0
where r1s the rank of
Proor  Lety,, . be a basis for the null space of  Then
dx, % 2 xu, X ., form a bass of Va(F), and

r+s=1/ Since y,0 =0, xx are generators of the range of & and so
are clearly linearly independent since the rank of 15 r Let i, = xa
and 14 € V,,(F) and be such that u,, SHr 3y, ,vm rformabasis
of V,(F} Then we have xa=u;, for 1=1,2, ,r and 3a=0,
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fori=1,2,...,h—r, and so the matrix of « is as described in the
theorem. |

6. APPLICATION TO LINEAR EQUATIONS

We shall apply the material of the last paragraph to considering the
solutions of systems of linear equations.

DEFINITION 6.1. ¢ € Vy,(F), where F is a field, is a solution
of the equation ZL,xa;=d, where d, a; € F & 2, cia;=d. If
d = 0, the equation is called homogeneous; if d # 0, nonhomogeneous.

THEOREM 6.1.  The set of all vectors of V,(F), each of which
is a solution of 2, x;a; =0, a; € F,j=1,2,...,m, is a subspace
of V,,(F). The dimension of this subspace is & — r, where r is the row
rank of 4 = (ay). In particular, there will always be at least one solu-
tion, not (0,0,...,0), if & > m. We shall call this set of equations a
homogeneous system of equations and denote it by (H).

Proor: Let e,,...,e, be a basis of V,(F), fi,....fm be a
basis of V,,(F), and « be the linear mapping of V,(F) into V, (F)
defined as in the proof of Theorem 5.1, by xa =y, fi + * * * + VuSm
where y,= 2, x,a,, j=1,2,...,m. Then the set of solutions of the
system (H) is the null space of @ and by Theorem 2.4, it is a subspace
of V,(F). That its dimension is h — r follows immediately from
Theorems 3.1 and 3.3. Obviously, the row rank of A cannot be greater
than m, so if h > m, h — r > 0, and so there exists nonzero elements
of V,,(F) which satisfy (H). =

PrOBLEM 6.1.  Prove that the range of a linear mapping o of
Vy(F) into V,,(F) is generated by the rows of the matrix of «.

THEOREM 6.2.  The system of equations, (N) =k, x,a;=d;
ay. d; € F, has a solution < the row rank of 4 = (a;) is equal to the
row rank of

an Qe dim

oy (3 Aam
B =

Apy  dpe Apm

dl d2 dh

If (t,,1s,. . .,1,) is a solution of (N) and (2, 2o, -
. -y th) + (zlﬁ Loy o -

of (H), then (1, 1. .

. ., Zp) is a solution

.,Zp) is a solution of (N);

furthermore, every solution of (N) can be represented in this form for
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afixed (f; 1, ) by asutable choce of (z, z, )

ProRLEM 62  Prove Theorem 6 2

2 3 4
PrOBLEM 63 (a) With 4 — (l 4 5) solve (H)
3 7 1

(b) with the same A and d; =4 d, =11 dy=6 solve (N)
(c) withthe same 4 and d, —3 dy =7 dy=2 solve (N)

COROLLARY 6 1 If  1s 1 nonsingular transformation of ¥, (F)
with matnix A = {ay) the system (N) has one and only one solution

Propren 64 Without using Theorem 6 2 prove Corollary 6 1

7 ROW EQUIVAL ENCE AND
ELEMENTARY OPERATIONS

Here R 1s a ning with an wientity element

DennimioN 71 () A s an A X mmitnx & A € R *7 where
S§={12 Wy r={2 m}

(b) let 4 and B be ## X m matnices Then A ts row (column)
equnalent to B < the module generated by the rows (columns) of A
1s the same s the module generated by 1he rows (columns) of B 1
R1s 1 field the modules will be the row space or the column space

DEFINITION 77 let A € R T Aa elementans row (column)
operation performed on 4 1s any one of the following

(1) the interchange of two rows {columns)

{b) the multiphcation of 1 row (column) by 1 umit of R

{c) the addumn to the elements of any row (column) of A of A
times the cor | of any other not the same)
row (column) where A € R

THEOREM 7 1 If any elementary row (column) operition 1s
performed on a munx A the resulting matnix 15 row (column) equiv
alent to A4 and 1if R 15 1 field the resulting matrix has the same row
(column) rank as A

Proor  The conclusion of the theorem 1s obvious if the ele
ment1ry operation 1s of type (a) or (b) We shall consider the cise of
an elementary operation of type (¢} Let s, ry r be the rows of
A nd let ¢ be the element of R by which we multtply say the first
row and add the results to the corresponding elements of the second
Tow (There 15 no restriction on the generality by choosing these two
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rows, and it makes the notation much simpler.) If x is in the module
generated by the original rows, then it can be expressed in the form
gty + ot + + -+ ayry = x, but we may write this as x = (a; — axc)r
+ ao(ry + cry) + -+ -+ ayry, where the a; € R, but this latter expresses
x as in the module generated by the new rows. On the other hand, if
x is in the module generated by the new rows, then x = b,ry + b,
(rs+cry) ++ - -+ byry, where the b; € R. But this can be written
as x= (b; + byc)r; + boros + - - - + byry, which shows that if x is in
the module generated by the new rows, it is in the module generated
by the original rows. Therefore, the two modules are the same and
so the two matrices are row equivalent. Exactly similar reasoning
applies to the case of operations with columns. The statement about
the case in which R is a field follows from the definition of row and
column rank. a

THeorReEM 7.2. Row (column) equivalence is an equivalence
relation.

PROBLEM 7.1. Prove Theorem 7.2.

DEFINITION 7.3.  Let A, B € RS5*T. Then A is equivalent to B
< B can be obtained from A by a finite number of elementary row and
column operations.

THEOREM 7.3.  Equivalence of matrices is an equivalence
relation.

PROBLEM 7.2. Prove Theorem 7.3.

THEOREM 7.4.  The matrix I, = (8,), where §;=0 for i # j,
;= 1, is the identity element for 4 ,. Further, I,4(Al,) = A for
any it X n(m X h) matrix A. (When, from the context, it is clear what
the size of /, must be, we shall often omit the subscript.)

DEFINITION 7.4.  An elementary matrix is any matrix obtained
from the identity matrix by performing exactly one elementary row
or column operation.

THEOREM 7.5.  An elementary matrix is nonsingular.
PROBLEM 7.3.  Prove Theorem 7.4.
PROBLEM 7.4.  Prove Theorem 7.5. (Hint: use Theorem 7.1)

PROBLEM 7.5.  Write an elementary 3 X 3 matrix of each of the

possible types of Definition 7.2. Do this for both row and column
operations.
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ProBLEM 76  Show that any elementary matrix may be ob
tamned by either an elementary row operation or an elementary column
operation

ProOBLEM 77  Prove that an elementary row (column) opera
tion performed on a matnx A can be performed by muftiplying 4 on
the left (rnght) by the elementary matrix obtatned by performing on the

identity matrix the given Y row

ProBLEM 78  Venfy the statement of Problem 77 for the

245
matnix 4 ={~1 3 7)
4 01

PROBLEM 7 9 Prove that the product of any fimite number of
y matrices 1S I

THEOREM 7 6 If the matrix 4 15 row (column) equivalent to
the matnix 8 then B = PA (B = A(Q) where P(Q) 1s nonsingular and
further 1s the product of elementary matrices

ProBLEM 7 10 Prove Theorem 76 (Hint use Defimtion 7 1
the method of the proof of Theorem 7 | and Problem 77}

CoRroLI ARY 7 | If the matnix A 15 equivalent to the matnx
A then there exist nonstngular matrices P and Q such that PAQ =B

We have 0 this present section been considenng matnces with
elements i i arbitrary ning B We shall very soon consider matnces
with elements in o field F but first for convemence we estabhsh
some further results about vector subsp ices

8 A PARTICULAR KIND OF BASIS FOR A
VECTOR SUBSPACE

We first prove a lemma

LEMMA  If the vector space § over F 1s generated by a; a
a; then S 1s generated by q, a4, b a a, where
b—3h Nay A €F N #0 foreach:—1 2

PROOF  Obwviously the vector space generated by the second
set of vectors 1s contained in § Now
A

Ao A, ! Ay
a Pl ~N ¢ 1+)\—'b ToenT N
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Thus every vector in S can be expressed as a linear combination of
the vectors of the second set. Therefore, the two spaces are the

same. n

The proof of the next Theorem is not particularly difficult, but it
is slightly tedious. The reader would be well advised to take some
particular matrix and carry through each step of the proof with it.

THeEOREM 8.1.  Let the vector subspace § C V,(F) be gener-
ated by ;= (ay, . - ., ), j=1,2,. .., k. Then S has abasis (b,, bz,
v ig) =b;, i=1,2,...,m, such that there exists a strictly in-
creasing finite sequence j; (i.e., j; <j, for i < p), (1) b;=01ifj <j;
2) b,-j‘, =1; (3) b,L,-,, =0, for « # i.

Proor: If any of the a, are different from zero, let j, = 1.
Otherwise, let j; be the smallest j such that for some i, a; # 0. Then
among the a,, which are not zero, let a,,; be that one with smallest i.
Now let ¢;= (1/a,;,) aiy, J=1,. .., h. Then by the above lemma,
S is generated by the set of vectors obtained by replacing «;, by
¢y = (¢y, Cras - « ., C1p) In the original set. Let us now remember, if
necessary, the original set of the a; so that a;, becomes a;. Then § is
generated by ¢y, a,, . . ., a; and we have ¢;; = 0 for j < j,; a;, =0 for
J<jiey,=1

Now replace each a,i > 1, by a, — a,;,¢c;, = ¢,. Then ¢y, ¢y, . . ., g
generate S, by the lemma, and ¢,; = 0 forj < j;, i > 1. Now, ifj, < h,
on operating on ¢,, . . ., ¢; in the same manner, we get a set ¢,d,,
.. ., dy such that these %k vectors generate S and dy =0 for £k =< j,,
i >2; dy;, = 1. Now replace c, by d; = ¢; — c,;,d> and we have further
that d,;, = 0.

Continuing by induction, we finally reach a set of vectors e,

..y ¢, which generate S and have the properties: e; =0 if j <,
ey =1, ey, = 0, if v < i, and further ¢, e,, . . ., e, generate S.

Now wereplace e, . . ., e, by b; = e; — ey er fori <randb,=e,,
and we have a set of vectors which possess the properties stated in
the theorem. That they generate S is clear from their derivation with
frequent use of the lemma. That they are linearly independent follows

infmediately from the three properties. Therefore, they are a basis
of §.
|

PROBLEM 8.1.  Verify in detail the linear independence of the b;.

PROBLEM 8.2.  Find a basis of the type of Theorem 8.1 for the
veetor space generated by a; = (0,0,0,3,2,4), a; = (0,0,0,4,2,0),
4;=(0,0,0,0,3,1).
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Prosiem 83 Do the same a5 in Problem 82 for ay=
(1352~ a=(342-23) ,—(42153) ¢,=(89855)

9 EQUIVAI ENCE OF MATRICES OVER A FIELD

We now consider matrices with elements 1n a field I~ and we shall
find that mny of the theorems of Section 7 ire such that their con
verses also hold

THEOREM 9 1 The matrix A4 1s row (column) equivalent to
the matnx B = A and B have the saume row (column) rank

ProBLEM 91 Prove Theorem 9 1

THEOREM 92 The i X m murnx A h1s row rank 7=>4 1s row
equivalent to 1 matnx of the form

0 o w PRI a an L a2
° oo 0 0 ww . PR P a0 a au
4 o0 o v oo 3 [ PR ™
@ oo o v 0 o o a @ a a, P
@ e o @ a o 0 a o o o o
»
" o0 @ o o @ a0 o 0 o o,

where ¢y — 1
PROBLEM 9 ° Use Theorem 8 | to prove Theorem 97

PROBLEM 93 Give the form for column equivalence corre
sponding to the form of Theorem 9 2

PrOBLEM 94 Find a matnix of the form of Theorem 9 2 row
equivalent to

2 ) -4 1
-2~ 4 1
A=l 2 4 3

o 7 -4 9

THeOREM 93 (cf Problem 79) A matnx over a field F 1s
nonsingular < A 15 a product of elementary matrices

ProoF  The implication <= 1s established by Problem 7 9

The wnphcation = 1f A € AL, ts nonsingular 1t 1s of row rank
A and so by Theorem 92 row equivalent to the rdentity matnx [
Thus by Theorem 7 6 1 — PA where P 1s a product of a finte number
of elementary matrices Letting P~ E\E E, we hwe A=

E B B TE! =
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COROLLARY 9.1. If B=PA (B=AQ) where P(Q) is non-
singular, then B is row (column) equivalent to 4.

PROBLEM 9.5. By using the method of the proof of Theorem

2 3 4
9.3, find the inverse of 1 2 3}
-1 2 3

PrROBLEM 9.6.  Prove Corollary 9.1.

THEOREM 9.4. A is row (column) equivalent to B = column
(row) rank of 4 = column (row) rank of B.

ProoF: By Theorems 3.1 and 3.3, if we can show that the null
space of B is the same as the null space of A, we have the theorem.
(We shall prove the parenthetical statement.)

Since A4 and B are column equivalent, there exists a nonsingular
O such that B=AQ. Let o be the nonsingular linear transformation
with matrix Q, and « and B the linear mappings with matrices 4, B,
respectively. Then 8 = ao.

Now if x € null space of «, then xa =0, and so xB = x(ao) =
(xa)o = 0o = 0, and so the null space of 4 C null space of B.

On the other hand, if x € null space of B, then x8 = 0. Then we
have xa= (xa)(ogo™!) =x(ao)o™'= (xB)oc '=00"1=0, and so
the null space of B C null space of 4.

Therefore, null space of B = null space of 4. n

PROBLEM 9.7.  Prove the other case of Theorem 9.4.

THEOREM 9.5. The matrix 4 over the field F is of row rank
r= A is equivalent to the matrix (cy), where ¢; =0 for i # j, ¢; = 1
fori<r,and ¢;=0fori > r.

Proor: By elementary row operations, 4 is equivalent to a
matrix of the form given in Theorem 9.2. Then by elementary column
operations of type 3, all the nonzero elements except the ay, can be
eliminated. Then by further elementary operations, this time of type 1,
the ay;, can be moved to the position specified in the theorem. n

THEOREM 9.6.  If 4 is a matrix over a field F, then row rank of
A = column rank of 4.

PrROOF:  Let A’ be the matrix, row equivalent to 4, obtained by
the use of Theorem 9.2 and 4" that obtained from A’ by the use of
Theorem 9.5. By these two theorems, A and 4" have the same row
rank. Now, since A4 is row equivalent to A’, by Theorem 9.4, the col-
umn rank of A = column rank of 4'. Now the process used in the
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proof of Theorem 9 S to obtain 4" from A consisted of using only cle
mentary column operations and so 4 has the same column rank as
A and the same column rank as A Now A has obviously the same
row rank as column rank Therefore the column rank of 4 —row
rank of A L

Afier Theorem 9 6 we e justified 1n making the following defim
tion for mitrices with elements n a field

DerINITION 9 | 1f A 15 a matnix over a field thenthe rank of 4
IS 1ts row rank

TueoreM 97 Two matrices over a field F are equivalent 1f
and only if they hve the same rank

ProsLEM 98 Prove Theorem 97

10 EQUIVALENCE OF MATRICES OVER A
EUCLIDEAN RING

Much of what we have established about matrices over 1 field can be
ipplied to matrices over a Euchdean ning To facilitate this apphica
ton we prove the following lemma

LEMAA Let R be anintegral domain and £ ats field of quotients
and fet v ¥, 1w € Va(R) Then x, x, x, are linerly mde
pendent elements of Vy{R) < x, 1 ¥, are hnearly independent
elements of V()

Proor  The implicition <=1s obvious

The imphcation = Suppose that x, X, x;, we lmearly inde
pendent in V,(R) but not in F,(F) Then da € F not all 0 >
Tliax,=0 Now let a,—b/c where b « € R nd let d be the
product of ali the ¢, for wnch b; # 0 Thenda € R V1 and we have
2% dayx =0 where the coefficients € R and are not 1l zero since
the ; are not all zero We have a contradiction and so the x, x; EN
are Imearly independent in V,(F) -

In Definttion 9 1 we defined the row rank of a matnix over a field
Because of the above lemma we are jusufied 1n making the following
defimtion for matrices over an integral domain

DEFINITION 101 The row rank column rank and rank of a
matrix A4 over an integral domair [ 1s the appropriate rank of A con
sidered as a matnix over F the field of quotients of /
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For matrices over a field we had the very convenient result given
by Theorem 9.7, that if two matrices have the same rank they are
equivalent. This is no longer true when we consider matrices over an
integral domain as Problem 10.1 below show. First, we need a
definition.

DEFINITION 10.2. A matrix 4 = (a;) is called a diagonal
matrix ¢ Vi # j, a;=0. Such a matrix is denoted by diag(ay,, @z,
c e lpp)-

ProsLEM 10.1. Prove that diag(1,1,1) =4 and diag(2,2,2)
= B are equivalent as matrices over Q but not as matrices over Z.

THeoreM 10.1. Let E be a Euclidean ring. Then a matrix

A = (a;) of rank r, considered as a matrix over E, is equivalent to a

matrix diag(/i;, e, - . ., 1,,0,0,. . .,0), where /|h;y,, for i=1,2,
L= #O0fori=1,2,...,r.

Proor: Consider 8(ay), i=1,2,...,k, where 8(x) is given
in Definition 4.1 of Chapter 5. If §(ayy) is not the smallest positive
integer in this set, bring the smallest one into position (1, 1), by inter-
changing rows. Then, since 3 g, r; € R 3 a; = ayq; + r; (using now
the new a,,), where 8(r,) < 8(ay,), by multiplying the first row by
—g; and adding it to the ith, if 8(r;) > 0, we get in the position (i, 1),
ri. 1If not all 8(r), i > 1, are zero, let 8(r;) be the smallest positive
8(r,)), i = 1. Then we can move it to position (1, 1) (if it is not already
there), and continue. Finally, since § is integral valued, we get zeros
in the first column below the position (1, 1). Now, if 6(a,,) is the mini-
mum positive value among the d(«a,;), we can proceed for the first
row as we did for the first column and get zeros to the right of the
position (1, 1). If not, replace «,, by that element in the first row with
minimum positive § value, Then, as before for the first column, we
can get zeros in all the places of the first row. Now, in this process
we may have introduced some nonzero elements in the positions
(i, 1) for i > 1. But. we have now in the (1, 1) position an element of
smaller positive § value than before. By continuing the process, since
& takes on only nonnegative integral values, we eventually get a matrix
equivalent to the original one with zeros in the first column and the
first row except in position (1, 1).

Of course, if all the elements in the first column are zero, we may
by an elementary operation bring, if 4 # 0, (of course, if 4 =0 the
theorem is trivially true) a nonzero element into position (1, 1).

Now we proceed in like manner to get in the position (2,2) a
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nonzero element f there 1s one left in the matrix besides that in post
tion (1 1) and we proceed to get zeros in the second row and second
column except for position (2 2) In the process the first row and first
column 4re not affected and have no effect upon any of the other rows

Continuing thus we get a diagonil matnx dieg(d; d; d,
0 0) Ifd|d , we re through If not by elementary operat ons
we may move the d of smallest § value into posiuon (1 1) Thenif
d }d, we miy multiply the first row by —g¢ where di=dig+s
8(s) < 8(dy) nd then 2dd the first column to the second column
Then multiply the first row by ¢ wnd add 1o the second and we have
dig(d s &b } Now interchange as before s and d Continuing
thus we eventully get dng(l, o 0) where h|hy,
=12 r—1

1t follows from constdering the field of quotients £~ of E and then
tpplying Theorem 9 5 tht exactly r of the /i are not zero =

The form of the matrix 1n Theorem 10 115 called the Smuth normal
Sorm
PROBLEM 102 Apply Theorem 101 to (é g) as 2 matnx

over Z

>
>
=3

A A0
PROBLEM 103 Apply Theorem 101 to ( ) as a

matnx over O[A}

1T EQUIVALENCE OVER F[A] SIMILARITY

We are now going, to apply some of the results about equivalence of
matnices over t Euclide in domun to & particular Euclidean domain
F{A] where F 15 a field wd A an indeterminrte Then we shall apply
these to another kind of equivalence relation 1n A{,

We shall now use \ 1s an indeterminate when we have matrices
as coefficients and A as an indeterminate when we have elements of
F as coefficients Thus R * [\] s the set of all polynomuals in A
with coefficients /i X h matrices with elements in R while (R[A])**
18 the set of A & ¥ i matnices whase elements are polyromals m h
with coefficients in R

THEOREM 11 1 If R 15 a commutative ning with an dennty
element then as 1lgebras over R R * [ \}1s1somorphic to (R[A]) *S
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ProsLEM 11.1.  Prove Theorem 11.1.

We now need a definition and a proposition about polynomials
for which we have had no previous need.

DeriNITION 11.1.  If the leading coefficient of f(x), of degree
n, € R[x]. where R is a ring, is a unit of R, then J{x) is said to be
proper of degree n or of proper degree n.

LEMMA. Let a(x), b(x) € R[x], where R is a ring with an
identity element, and «, b are proper of degrees /m, and m, respectively.
Then if a(x)py(x) = p.(x)b(x), where p,(x), p.(x) € R[x], T q(x),
r(x), ra(x) € R[x] 2 ri(x) =0 or deg ri(x) < my, fori=1,2 and
such that

a(x)ri(x) = ro(x)b(x),
pi(x) =q(x)b(x) + ri(x),
p2(x) = a(x)g(x) + ra(x).

Proor: By Theorem 1.4 of Chapter 5, 3 gy, o, 11, 12 € R[x]
Sr=0o0r deg r; < m; for i=1,2 and p,(x) = b{x)q,(x) + ri(x),
p2(X) = a(x)g.(x) + ro(x). Then ar, — rb = apy — aq;b — p,b + aq.b
= aq,hb — aq;b = a(q. — q;)b. Now ar, —r,b is either zero or, by
Theorem 1.3 of Chapter 5, of degree < my + m,. Since a unit is a
regular element, a(qg, — q,) b is either 0 or of degree = m, + m,. There-
fore, both these expressions are 0, and we have ar, = rb, and g,
=g, =q. n

THeoreM 11.2.  If 4 and B are equivalent matrices of (F[\])5*S,
and if the corresponding elements of F$*S[A], given by Theorem 11.1,
are proper of degree 1, then there exists nonsingular matrices P, Q
€ F*S 3 4 = PBQ, where F is a field.

PrOOF:  Since A and B are equivalent, 3 P,, P, € (F[\])5*S,
products of elementary matrices, 3 AP, = P,B. The corresponding
elements of F$*S[A] can, without serious confusion, be denoted by
the same letters. Since A and B (as elements of FS*S[A]) are of degree
I, by the above lemma, 3 Ry, R, € F5*5 3 4R, = R,B. If we can
establish that R, and R, are nonsingular, the desired result easily
follows. Let us apply Theorem 1.4 of Chapter 5 to P! (P;7! exists
and € FS[A] by Theorem 7.6), and we have P,~!= 0.4 + R,
where Ry =0 or deg R;=0. Also, by the lemma, 3 Q, > P,=0B
+ R,. where R,=0 or deg R,=0. Then we have [=P P, =
(Qsd + Ry) (OB + R,) = Q340B + Q44R, + R;0OB + R3R, and so
I = RiRy = Q340QB + QuR.B + R;QB. The left side of this last
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equation ts either 0 or of degree O while the nght side equals (. 4Q
+ Q4R+ RyQ)B and so 1s 0 or of degree = 1 since B 1s proper of
degree 1 Therefore, both sides are 0.1¢ RyR, =/ and so R, 1s non
singular since 1t has an inverse R; Simularly, Ry s nonsingular Then
A= R.BR,™ or A = PBQ, where P= R,and @ = R,™ "]
THEOREM [13  Two h X m matrices, with elements 1n a field
F, are equivalent <> they are matrices of the same linear mapping
of Vy(F) mto V,,(F) for suitably chosen bises of Vx(F) and V., (F)

Promtrm 112 Prove Theorem 113 (Hint use Theorem 42
and Corollry 7 1)

DeninNttion 112 Two matrices 4 and B are symlar < 3 a
non singular matnx P 3 A =P 'BF

ThHeoreM 114 Simlanty of matnices 1s an equivalence re-
lation

THEOREM 11 S Two matrices are similar < they are matnces
of the same linear transformation with respect to switably chosen
bases

ProBiEm 113 Prove Theorem Lt 4
PropLEm (14 Prove Theorem 115

THEOREM I16 A4 B € M are similar <A —4 M- B €
(F{A])** are equivalent

Proor  The relation => Let A=P 'BP Then Al —A=
M—P'BP=P (M — B)P=>A —A and M — B are equvalent

The relation <= Let Af — A and A/ — B be equivalent Then by
Theorem 112 there exist nonsingular matrices P,Q € F¥™* 3
POM—BYQ=M—-A=APQ—PBQ = PQ=1 = A=0 80 =
A, B are sinular "

12 VECTOR SUBSPACES INVARIANT UNDER A
LINEAR TRANSFORMATION

First we make a remark about notation For brevity, we sometimes
write a matnx as a matnx of blocks Thus instead of

'y Qin Uy gy Aum
s M Oinns ™
0 0 @nn @rrm

0 0 drpn ayn
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. Ay A3>
we write ( 0 A,) where

Gy, ' in 0O --- 0
Al — - . - N 0 = . . . .
n Qg 0 --- 0
riin+r ° 7" Qeyim Aynr1r " " Qm
A2 f—i . . . . A3 — . . . .
Ar n41 ct ey Arp+r ° 7" em

DEFINITION 12.1.  Let « be a linear transformation of V,(F).

Then a subspace M of V,(F) is an invariant subspace of a = ¥V x €
M, xa € M.

For any linear transformation there are always at least two invari-
ant subspaces, namely V,,(F) and the subspace consisting of 0 alone.
Also, the nullspace of « is an invariant subspace of «. First we have
two theorems about invariant subspaces, and then we consider how
to determine them.

THEOREM 12.1. Let M be an invariant subspace of «, a linear
transformation of V,(F). Let the dimension of M be r < /i. Then
there exists a basis {¢,} of V,(F) such that the matrix of « relative
to this basis is (A' 0

3 2
zero matrix, A, is an (h— r) X (h—r) matrix, and Azisan (h—r) X r
matrix.

) where A4, is an r X rmatrix, Oisanr X (h —r)

Proor: Let ¢;,..., e, be a basis of M and e,,. . ., e, €1,
..., ey a basis of V,(F). Then e,@ =3 a;e; for i=1,2,...,r;
eia=3 ase,,i=r+1,..., h The formof (a,) is then as stated. u

In general, 4; # 0. In fact, even if V,(F)=M & N, A, is not
necessarily zero.

ProBLEM 12.1.  Apply Theorem 12.1 to the transformation of
Va(Q) given by: fia =2f, + 5f3, ra= fi + 2f — 1fs, faa = f; — 6f;,
fiofo. fy ave a basis of V,(Q). Note that even though V4(Q) can be
expressed as the direct sum of two subspaces, the submatrix A5 # 0.

_ THEOREM 12.2. Let M and N be invariant subspaces of «, a
linear transformation of 1, (F). Further, let V,,(F) = M @ N and dim
M = r. Then there exists a basis {¢;} of V;(F) D the matrix of « rela-
. . (A O :

tive to the {¢;} is ( 0‘ y ) where A, is an r X r matrix and 4, an
(h=r) X (h—r) matrix.

PrROOF: Let ¢,,. . ., ¢, be a basis of M and €ri1-- - -, €4 bE B



188 Linear Mappings and Matnces

basis of N Then ea=3Iaye; =1 rand eq@=E}iy a0
t—rtl & Sa (a;) has the form specified u

DErNITION 122 Let the vector spice F over the field F be
the direct sum of the two subspaces M and N which are invarant
subspaces of the linear transformation a of E Let a, 1nd «, be the
restricttons of « to M and N respectively Then and only then s a
called the direct sum of a, and @, and written a, + a; =« The sub
spaces Af and N are sud to reduce o completely Also the matnx of
o ts said to be the direct sum of the matrices of «, 1nd «, and we wrte
A—A DA, where 4, and A, are the matnces of o nd oz ve
spectively

PROBIEM 122 Generalize Theorem 12 2 and Defimition 122
to the case of i subspaces

In Defimtion 2 | of Chapter 5 we defined f(a) where f(x) 15 2
polynomial and « 1s an element of 1 ring contaiming the coefficients
of f{v} Now the ring of all hne ir transformations of a vector space
E over a field I contains a subnng isomorphic to F (see Problem 123
below) 1nd so we may consder polynomials € F[r] f(x) and
consider f(«) where « 1s a linear trinsformatton of £ We shall
let & () wd A& (f(a)) the latter briefly A" (f) denote the null
spaces of the lingar transformations « and f(a) respectively

PROBLFM 1?3 Prove that the ring of all linear transformations
of a vector space E over 1 field 7 has 1 subring 1somorphic to F
{Himt Let ¢ be the 1dentity transformation and then use the mapping
f < foof Funto the ning )

THEOREM 123 a1s a ltnear transformation of the vector space
Eover F f(x) € F[x] = A (f) 15 an mvarnt subspace of &

Proor  let x EA(f) 1e xfla)—0 Now swice £ s a
field afla) —fita) « Thus we have (xa)f(a) —xla fla))—
x(flay a) — (xfla))a—0r—0 Therefore ra € A (f) [ ]

THEOREM 124 a 15 1 hinear transformation of the vector space
Eover F f(x) (1) € Fix] g0Wx) =H gy c (N

Proor By hypothests 3 fi(x) € F[x] D f(x) = g (x)h(x}
Then If x € A/ (&) xs(a) —0 and so xf(a) ~x(1,(zx)h(a))
{xg{e))i{a) = ON{a) — 0 Therefore v € A" (f)

THEOREM 125 «1s a hinear transformation of the vector space
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E over F, fi € F[x], i=1,2,.. ..k d(“‘)z(ﬁ(’tﬂf’m;'c'&f") =
N (d)y=nEN(f).

Proor: By Theorem 12.4, &/ (d) C A (f), so A (d) C
NL, A (f)). By Problem 4.4 of Chapter 5 generalized, d s;(x) €
F[x] 2 d(x) = £, s;(x) fi(x). Now if x € Nk, A(f), then
x(fike)) =0,i=1,2,.. .,k Soxd(a) =xZL, s:(a)fi(a) = 0. There-
fore, NE, A (f)) T & (d). =

THEOREM 12.6.  « is a linear transformation of the vector space
EoverF, fi(x) € F[x],i=1,2,.. .k,

k
h(x) = [fhff%,- ; WSl =H () = Z,/V'(fi) .

Proor:  Since filh, /' (h) D N (f), i=1,2,... k. Hence,
ifx € L, N (f), x=3k,x, wherex; € N (f;) andsox € N (h).
To show that A" (h) C =&, A'(f;), we must show that if x € A (/),
then we can represent x as x = 3£, x;, where x; € A (f1), i=1,2,
.. k. Since fj|h, Aq;, € F[x] D h= q,f; for each i. Then, using
Problem 4.4 of Chapter 5 again, ds; € F[x] 2 1 =2k, 5;(x)qi(x),
since (qq, ¢on . . ., q) = 1. Then =L, s;(a)g;(a) =1, the identity
transformation, and so x = xt = =, x(s;(@) q:(«) ). We shall now show
that x(si(a)q.(a@)) € A (f;), Y i, and this will establish the desired
result. Consider [x(s;(e)qi())] fi(a) = x[si(@) gi(e) fi(e) ] = x[si(e)
h(a)] = x(h(a)s;(a)] = (xh(a))si{a) =0 - 5;(a) = 0. Therefore, x €
2y N (fi). Therefore, A"(h) ==k, /' (f). =

THEOREM 12.7.  «is a linear transformation of the vector space

Eover F,f=fifs - fiofisfone - o fi € Fx], (fi,fi) = lfori # j=
N N=K )OS (L) D - DN (f).

Proor:  Since the above conditions imply that f= [f}, fs .- .,
fi], we have by Theorem 12.6, /() = =, A (f;). Thus to estab-
!ish the statement of the theorem, we need merely show that this sum
is direct. For this it suffices to show that & (f;) N A" (f;) = {0}, for
i #j. Now (f;, haif) =1, and so if we apply Theorem 12.5,
we hak\_'e, since d(x) in that theorem is 1, and A" (¢) =0. {0} =
/1: (=1, 0 5) O A (f;), or applying Theorem 12.6 again, we have
§J=1:m A () 0 A () = {0} which implies £ (f;) 0 N (f;) = {0},

ori #J. -

THEOREM 12.8.  « is a linear transformation of Vy(F) = there
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exists a unique momc polynomual m(x) € Fx] 2 m{a) =0, and
2(x) € Fx], g(a) = 0= m{x)|e(x)

ProoF For any a € },(F), the set «, aa, ac?, , ao’ must

be linearly dependent for some t < Ji, since any h + 1 elements of
’+(F) are linearly dependent let ¢ be chosen as smll as possible,
and then for ¢; € F we have Z{., caa! =0 Let g(x) = Zfo; ;x’ and
then ag(a) =0 lete, e, e, be abasts for V,(F) and let g(x)
be chosen for each ¢;,1=1,2, i as was done above for a Let
Six) =g g1 L8] Then by Theorem 124, ¢;f{a) =0 for each
1 Now let ) € Vi{F) then y = Il e, and since f{e) 1s linear (cf
Problem 12 4 befow) 3 f{a) =0 Therefore, fla} =0 It 1s evident
that the set of all elements /i(x) € F{x] 3 /i{(a) = 0 form an 1dealn
1 [x] By Corollwy 8 1 of Chapter 5 this tdeal ts a principal ideal Let
the momc generator of this ideal be mix) Then mix) has the proper
ties stated in the theorem n

PrORLEM 124 Prove thatf f(x} € F{x] 1f o 15 alinear trans
formation of the vector space E over F then f(«) 1s a hinear transfor
mation of £

ProsLEM 125 Find the polynomil m(x) of the last theorem
for the Iinear transform wion of Problem 12t (Hint use the method
of the proof of the theorem )

DEFINITION 123 The polynomial mix)} whose existence s
established by Theorem 12 8 1s called the snrmum polynomial of the
hinear transformation a

13 MINIMUM POLYNOMIALS

In this sectton we shall consider mimmunm polynomuals of linear trans
formitions and of elements of a vector space relative to a lmear
transformation

THEOREM 13 1 Let m(x) be the minimum polynomial of the
hnear transformation « of ¥,(F) and let m(x) = php,*  plts be
the factonzation of m(x) 1nto a product of powers of distinct monic
polynotmals each irreducible in Fx] Letl, = A (p*),1=1,2 .
s Then L, L, +L; reduce o completely 1e V,(F)=L O L.®

DL, and a=e,+ o + + a, where @, 1s the hinear transfor
mation of L; which 1s the restriction of a to L, The matrix of a s the
direct sum of the matrices of the @, and each mateix of the o s a
1 X £, matrix where #,1s the dimension of A°(p/1) Lastly the mmmum
polynonual of a; 15 p*i
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ProBLEM 13.1.  Prove Theorem 13.1. [Hint: most of the theo-
rem follows from the preceding theorems once it is realized that

H(m(e)) =V,(F).]

In the next four exercises the reader is asked to find the minimum
polynomial for a given matrix (i.e., for the transformation which has
the given matrix as matrix). Either the method used in the proof of
Theorem 12.8 may be employed or the following: let

010
A_-.(o 0 1).
I 00

Since this is obviously not a multiple of /, we compute

0 0 1
A2=<1 0 0
010

and see if there exist as, a;,a90 € QO D asA?2+ a;A +a,l =0; i.e.,

0 0 1 010 1 00 0 00
all 0 01+ a‘<0 0 l) + cq,(() 1 0l=(0 0 0O}
010 t 00 0 0 1 0 00

By looking at the element of a,42%+ a,A + a,l in position (1,1), we
see that ¢, = 0: in position ({,2) that a, = 0; and finally in position
(1,3) that a, = 0. Thus 42, 4, I are not linearly dependent and so the
degree of the minimum polynomial is at least 3 and so we try using
1,4,A4% A4%. We shall prove later that the degree of the minimum
polynomial of an /1 X /i matrix is = h.

PROBLEM 13.2.  Find the minimum polynomial of the above A.

01 0
PROBLEM 13.3. Do the same for B = (—1 2 0)-
0 0 1

0
0)-
2

0 —t1

PrROBLEM 13.5. Show that D=<-] 1 1) has the same
-1 -1 3

0
PrOBLEM 13.4. Do the same for C = (—1

0

N O -

minimum polynomial as C.

!’ROBLEM 13.6.  Factor the minimum polynomial m(x) of the
matrix C into a product of powers of polynomials, irreducible in
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Qfx] as i Theorem 131 It will turn out that m(x) = p’p, Find
A (p) nd A (p,) and prove that V;(Q) s their direct sum Then
express C tn the form of Theorem 122 Venfy that p * and p, are the
mimmum polynomials for the matnices €y and C; respectively n
that representtion of €

ProuLEM 137 Do the same as 1n Problemt 13 6 for 4 and B
ProsLEm 138  Keeping in mind Defimtion 112 Theorems
115 122 and the resofts of the exercises 1bove find for the matnx

0) of Problem 137 the matnx of

A and the representation (':) Ay

Defimtion 112

ProBrem 139 Do the same as in Problem 138 for C D
and B

THEOREM 132 « 15 1 linear transformation of FA(F) a €
VilF)=9: €Z wd ¢« €F not all ¢ zero +=01 "3
Zactaa} =0

ProoF  Ifa € 14(F) thentheseta ax aa? aa® must be
hinearly dependent since they ire i + | elements of V, ( £) Thus there
must exist a rel ttion of the form of the theorem where < i [

CoroLrary 131 Under the conditions of Theorem 137
there exists a unique mon ¢ polynomnl m (x) € F[x] of mimmum
degree D am, (@) =0 nd 3 ux(a) = 0 for 4(3) € Fx] = my(x)|
a(x)

PROOF By Theorem 137 there exists 1t least one fx) €
F[x] 3 «f(a) ~ 0 Let g(x) € F[x] be another such polynomial
Then «[fle) +5(a)] = f(e) + agia) =0 and Vhix) € Flx]
c[fledh(e)] — {eftad)hi(e) — Oy O alh(e)f(e)] — olf(e)
Ma)] ~ [af (a)1h{a) = © Therefore the set of 2l f(x) € F[x] 3
af(a) O s an tdeal Al iderls in Fx] are principil Therefore
A monte a1, (x) € Fx] which generates this ideal and that it1s umque
and agla) — 0=211,(x)|g{x) follow from the well known properties
of principal 1deals [ ]

DEFINITION 13 ] The unique montc polynomial n1,(x) whose
existence Is established m Corollary 13 1 1s called the order of a
relatnve to a

ProBLEM 13 10 Prove that the degree of the order of a 15
less than or equal to degree of the mimmum polynomtal of a
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ProBLEM 13.11.  Find the orders of (1,2,0) and (0,0,1) for
the linear transformation whose matrix is C of Problem 13.4. (Hint:
in this and several of the following exercises, the reader might find it
convenient in finding a«, to regard it as

(ay, dz, . - ., ) (“11 vt alh)
Ay - dppy
ProBLEM 13.12.  Find the orders of (1,3,~1) and (0,—1,1)

for the linear transformation whose matrix is D of Problem 13.5.

ProBLEM 13.13. Do the same as in Problem 13.11 for B of
Problem 13.3.

PrROBLEM 13.14. Show that in the above three exercises, the
orders divide the minimum polynomials of the linear transformations.

ProBLEM 13.15. Find the orders of the sum of the two vectors
in Problems 13.11, 13.12, 13.13.

ProBLEM 13.16. Find the order of (1,2,0) for D of Problem
13.5.

14. CYCLIC SPACES AND TRANSFORMATIONS

DeriNniTION 14.1. The subspace generated by a, ao, ac?, . . .,
where ¢ € V), (F) and « is a linear transformation of V,(F), is the
cyclic space generated by a under o, and is denoted by {a}.

THEOREM 14.1.  The cyclic space generated by a € V,(F) is
an invariant subspace of «.

Proor: Let v € {a}. Then v=cya+ ciaa + coa0®+ -+ -+
cuta” = af(a), where f(x) = Ly ¢x'. Then va= af(a)a € {a}. =

CoroLrary 14.1.  {a} is the smallest invariant subspace of
« which contains a.

ProBLEM 14.1.  Find {a} for the vectors given in Problems
13.11,13.12, 13.16.

. CorOLLARY 14.2.  m,(x) is the minimum polynomial for the
linear transformation of {a}, which is the restriction in {a} of a.

y (FC)OROLLARY 143, m(x) for « is a multiple of m.(x) Va €
h .
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ProBLEM 142 Prove Corollares 142 and 143

ProsLem 143 Show by an example that even though V,(F)
=1,®1, where I;={«} —1 2 the mumum polynomial of e
need not be the product of m (x) and ni,,(¥)

THEOREM 142 I the orders my{x) of f; € },(F) =12
r are relatively pnime 1 pairs then the order of f=f + f; +
+ £, ts the product m{x)#1 () mx) = n{x)

Proor  fim(a)=0:=12 rand so fiur{e) =0 i=12
r Therefore fnl{a) =S ./ n{a) =0 and so m(x)|n{x) Now
let 5y(x) = my(x)m (xX)ms(x) m,(x) Then f5,(a) — 0 wnd fis,(a)
=0 forj—273 r Therefore since fs,{a) = fis,ta) +fis,{a)
+ +fis(a) we hwe fs(a) =0 Therefore m (x)|5;{x) wmd

since {m (x) m{x))—1 for;—23 r ny{x)}|my(x) Stmilarly
m(eHmdy) o=12 r Therefore n{x}}m(x} indso since both
n(x) nd iy re mome we hive nty) — mylx) [

DEFINITION 142 Let « be 1 hinesr transformation of | ,(F)
Then a set of elements e, e, en € ValF) generate 3 4(F) rela
metoaRYu € byF)Ad(v) € Flx] Du—3Z" ed(a)

Such a set of elements 1lways exists since ¥a(F ) his an ordinary
basis and this generates | 4(F) i the 1bove sense with all the & (x)
EF

TueoREM 143 m(¥) 1s the mimmum polynomnl of @ 1 linear
transformation of Vi (F} =T f € 1,(F) D mfx) — m(x)

ProoF lete, e « generate | ,(F) relative 0 « wnd let
m{x) = me (¥) #1,lx) m "(x}] Now m,,(x)|mix) and so
m(x)m(cy

On the other hand 1f # — %, ¢ ¢ (a) then um(a) — Ein, € di(a)
mia) =X eml{a)d (a) —0 = mla) =0 = m(x)|m(x) by The
orem 128 Hence mix) — mix)

Now let m, (¥) = (p (x))* (py(x))* (prix))*  wherep (x)
s monic and irreducible in F[x] +—1 2 noand p(x) # p (x)
ifr#; Then if A —mux(h & ko) y=12 r we have

mixy = {p XNt (pala) ) (prlx))*

If the order of 4 m,(¢j — 1 (¥j(x} theny — ut(aJ has order
£(x) since 16y(a) =0 nd if 1d(e) — 0 where d(x) € F[x] then
uty(e)d{a) ~ 0 = 1,(x)t (x}}1,(x)d{x) = t,(x)]d(x} nd s0 £(x) 15
the order of 1
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Thus if A, = Ay,, the order of f; = e;(p.(a))*2u(ps(a))ism - - -
(pra))truis (pi(x))"'. Similarly, we can find f,. j=2,3,.. ., r 27
has order (p,(x))’s. Then, by Theorem 14.2, f = f; + fo + - - - + f; has
order m(x). -

£
ProBLEM 14.4. Find vectors f of the type of Theorem 14.3 for
each of the linear transformations of Problems 13.2, 13.3, 13.4, 13.5.

DEerFINITION 14.3.  The linear transformation « of V,(F) is
called ¢ yclic (also called nonderogatory) < 3 ¢ € Vi (F) 3 the cyclic
space generated by e under « is V,,(F).

COROLLARY 14.4. The minimum polynomial of a linear trans-
formation of V,,(F) has degree < h.

ProBLEM 14.5. Prove Corollary 14.4.

PrROBLEM 14.6. Determine which linear transformations
studied so far are cyclic.

THEOREM 14.4. A linear transformation « of V,(F) is cyclic
< the degree of the minimum polynomial is /.

ProoF:  The implication =>. If « is cyclic, e D {e} =V, (F)
15 cyclic = deg m.(x) = h, and so by Corollary 14.3, deg m(x) = h,
but by Corollary 14.4, deg m(x) < h. Therefore, deg m(x) = h and
me(a) = m(x).

The implication <. If deg m (1) = h, then by Theorem 14.3, d e
3 me(x) = m(x). Then deg m.(x) = h, and so dim {e} = h. There-
fore, by Problem 6.4 of Chapter 4, {¢} = V,,(F) = a is cyclic. n

THEOREM 14.5.  If a is a cyclic linear transformation of V,(F),

there exists a basis of V,(F) such that relative to this basis the matrix
of a is

0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
Ay dy s dgz * " Uy

where m(1) =" — g, _ 201 — -

i -~ @ — gy is the minimum poly-
nomial of a.

PROOF: By Theorem 14.3, 3 ¢ € V,,(F) 3 {e} = V,(F). Then
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et ol Lis abavs of Vp(F) andsf we let &= e | we
have
ea= ey
ea= ey
€ (= LY
e = dyey+a et a et +a, ey ]

DEFINITION 144 The matnix tn Theorem 14 5 1s called the
companon matric of m{x) This matnx s called the Jordan canonmcal
matrie of the hnear transformition «

TutoreM 146 If € (& the companien matrix of ai(x) then
the Smith normal form (¢f Theorem 10 1) of x/ — C s diag (1 1
1 m(x))

ProBLEM 147 Prove Theorem 14 6

PROBLEM 148  Use any of the hineir transformations found
i Problem 14 6 to be cychc and venfy Theorem 14 5 for the chosen
case

The form of the mytnx 1n Theorem 14 5 displays the mimmum
polynomtal of the cyclic transformation but not its factonization We
shall now develop a matnx of « which displays the factonzation of
m{x) mnto frctors irreducible 1n F[x] Thus the first formis unchanged
when we go to an extension field of F while the second will 1n general
change

We shal first consider the special case in which m(x) = (p(x})*
where p(x) 1s wrreducible in F[x] For ease in reference we are going
to prove the theorem first and then state it Let p(x) = X2 —dq 11° *
- —mx—a, Then of course deg m(x) =/ — kg Further let
e € ValF) and be such that {c} = V,(F) We shall now define some
vectors whech form a basis of V,(F)

Si—elpla)) 1 fi=e(pte)) e So— efplan)t e
Jorr—e(p@)* * for — e(pla))* 2o Sro— €(pla))* ot
frmn—e Ih vgs2 = e frg— e *

Each f1s of the form e¢(a) where deg ¢(x) < kg — h Further
more no two of the ¢ s have the same degree Then the q f s are
hnearly independent over F since a lnear relation between them
would give nise to a polynomral s(x) € F[x] D es(a) — 0 contrary
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to our hypothesis that « is cyclic. Therefore, the f’s form a basis of
Vi(F).

The matrix of « relative to f;, fo, - . ., frq IS Obtained in the usual
way as follows:

fi a= fo
f a= fa

ﬁz—laz Ja

fo a=e(p(a))tr?=e(p(a))*'[a?=p(a)]
=e(p(a))*apt + qa+ -+ -+ ag,a"7)
=aofi + arfo +axfst+ -+ Aq-1fq

forra= fq+2

(H fq+2 0l=." fq+3

féq—la; f:’.q
fuu  =e(p(a))27=e(p(a))* 2 [a?— p(a)] +e(p(a))!
_f Aofars + Qrfare + Qofqua+ - - -+ Aq-1/2¢ T S1

f(l‘-1)q+1a = ﬁk—l)q+2
ﬁA—l)q+za = ﬁk—-l)0+3
fra & = Aofin-tg+1 T Aifin—pgre + 7 - Aq-1fra T fir-vt1-

Hence, the matrix of «, relative to the basis fi,fs,. . ..fi, has the
form (2)

C

(2) D C O

O D .

‘D C

where C is the companion matrix of p(x) and D is the g X g matrix (3):

00 0
(3) D = 0 0 M 0

10 --- 0

. TH.EOREM 14.7.  If a is a cyclic linear transformation of V,(F)
\\J:X_t}l minimum polynomial m(x) = (p(x))*, where p(x) =x?— a,_,
AT == aux — q, is irreducible in F{x], then there exists a basis
of V,(F) such that relative to this basis the matrix of « has the form
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(2) where C 1s the companion matax of p(x), and D 1s given by (3}

if the reader 15 i doubt about some of the details of the preceding
he might find 1t clanifying to wnte out a few more steps 1n equations (1)

THEOREM 14 8 If @ 15 a cyche hnear transformation of ¥, (F)
with minimum  polynomial  m(v) = m{x)n{x) n(x), where
the m(x) are relatively prime n paes then 3 ey ¢y e, € V,\(F)
B h(F)={e} @ {e:}® @ {er} and nre (x) = m(x)

Proor  let u(x) = mix){m(x) and let e,= en(a) where ¢
1s 4 generator of ¥, (F) relative to « Then since o 1s cyche m, (x)
=1my(x}) By Theorem 142 the order of e=¢,+e + +e, 15
m(x}) Hence {e}=1,(F) id so },(F)={e}+{e}+ +
{e,} Because of the dimenstons this sum must be direct »

THEOREM 14 9 If « 15 a cychc linear transformation of V,(F)
with mummum polynomsal m(x) — (pi{¥)}* (patx))™ {Px)¥r
where the p (x) are monic wrreducible in #{x] nd relatively prime
n pairs then there exists a basis of V,(F) such that relative to this
basis the matrix of o has the form (4) where each /1 15 of the form

H,
) H:

H,

(2) and 1s determined from (p (x))* 10 the same way as the matrix
(2} was determmed from (p{x))*

ProoF  Apply Theorem 14 7 and then Theorem 122 »

Now we state and prove a propostiton which 1s useful 1n the proof
of a Jater theorem and also 1s useful in applying the last few theorems

THEOREM 14 10 Let {(n(x))}* be the highest power of n{x)
which divides the minimum polynomal m(x) of the linear transfor
mation « of Va(F) where n(x) is wreducible in Fx] and let §,=
Nn) i—01 A ThenIaES DaggS fori=sh

Proor (n{¥)) "' — n(x)(n(x))} and so by Theorem 124
$i € Si.y We must show that the incluston relation 1s a strict inclusion
Suppose that S, — S, for some : = 4 — | then the nullity of (#{c))
=nullity of (n(@)) ! and so by Theorem 3 3 rank of (n{a)) ~ rank
of (m(a})™*! and so if 4 1s the matnx of a (n(4)) 15 equivalent to
(n{4))"** Therefore there exists nonsingular P 2D (n(A)) —
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P(n(A))™'. On multiplying both sides by (n(4))*""'g(A4), where
g(x) = m(x)/(n(x))*, we then have f(4) = 0, where f(x) = (n(x))*1!
m(x)/(n(x))* is of degree less than the degree of m(x), which is
impossible. Therefore, 3¢ € S; and a & S;-;. =

ProBLEM 14.9. For C of Problem 13.4 find a; €A (x— 1)
24, €N ((x— 1 ay EN((x—1)2) D a, N (x—1).

ProBLEM 14.10. Do the same for B of Problem 13.3.

DerFINITION 14.5.  The matrix (4) of Theorem 14.9 is called
the classical canonical matrix of the cyclic linear transformation «.

ProBLEM 14.11. Find classical canonical matrices for A4, C, D
of Problems 13.1, 4, 5.

15. NONCYCLIC LINEAR TRANSFORMATIONS

We shall now consider a noncyclic linear transformation « of V,( F).
We shall, as we did for Theorem 14.7, prove the theorem first and then
state it. Let m(x) be the minimum polynomial of « and we shall first
consider the case in which m(x) = (p(x))*, where p(x) =x7—
gy X' — -+« —a,x — q, is irreducible in F{x]. By Theorem 14.3,
dey 2 me,(x) =m(x) and let M, = {e,}. If a is not cyclic, then
da € V,(F) Du€& M, For every u € V,(F), u(p(a))*=0,
u(p(a))®*=u, and so Ik, € Z* D u(p(a))*™ € M; while
u(p(a))w=t & M,. Now of the set of all @ € M,, choose one, call it
i, such that the &, just discussed is maximum. Now, finally, rename
it e, and call k., , k,. Then e, (p(a))*? = e,g(a), where g(x) € F[x]
and is of degree < kg. Now T g(x),r(x) € F[x] 3 g(x) = (p(x))*:
q(x) +r(x), where r(x) =0 or degr(x) < k,q. Then e, (p(a))**
=eq{a) (p(a))* + e,;r(e). On multiplying by (p{(«a))**, we have
e’m(a) = e, q(a)m(a) + e;( P(a))**2r(a). Therefore, e;(p(a))**e
r{a) =0. But (p(x))**r(x) is of degree < (k—k,q+ koqg = kq
and the order of ¢, is of degree kq. Therefore, r(x) = 0. Therefore,
&' (pla)* = e q(a) (p(a))*=.

_ Now we define ¢, = e,’ — e,g(a). Then e,(p(a))*2=0 € M,.
This element ¢, has the same maximal k, as e, since e pla))
=o' (pla))f=t — e, (p(a))=q(a); if ex(p(a))*' € M,, since
ei(pla))t=-ig(a) € M,, we should have e, (p(a))*~! € M,, which
1S contrary to the choice of e,'.

Finally, we must prove that there is no polynomial, s(x) € F[x],
of lower degree than kaq D eys(e) =0. For that, let s(x) € F[x]
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and es{e) —0 Thenif (x) s agecd of s(x) and (p(x)}** Fa(x)
b(x) € Flx] D d{x) — s{x)alx) + (p(x))*b(x) Hence ed(a)
— exs(a)ala) + ex(p{a) )*h(e) Since the two terms on the night
€M, ed@) €M  But since dx)|(p(x))*+ d(x) ~ (plx))*
where 0 <1 <&, But since ¢,d{a) € M, and because of the chorce
of k; v =4, and so s{x) = (p(x))*n (x)

Now we define g, ¢ faae precisely as £ fy fie were
defined 1n the proof of Theorem 14 7 with the ¢ and A of that develop
ment replaced by e, ind &, respectively

The ¢ s just defined are hnearly independent and the set con
sisting of the £ s ind the 4 s s fmearly independent for otherwise we
should have a relation e,f(q) — e g{a) where f(x) and £ (x) € F[x]
and are of degree < k ¢ and Ag respectively By the reasomng given
above for s(¥) we see that f(x) must be divisible by (p(x)}** which
1s of degree kg Therefore 1n the supposed relation f(x) must be
zero and so linear independence 15 established

Finally from the form of the & s it 1s clear that the subspace
generated by them 1s an invariint subspace relattve to a and the
effect of a 1s given by a set of equations precisely of the form of the
equations (1) m the proof of Theorem 14 7 with the f s replaced by
the ¢ s and A replaced by 4,

Let A, — {¢;} Then if 1,(F)— A @M, [by the above if
FalF) s the sum of M and M it1s clearly the direct sum] then the
D 0
0 D,
form (2) of Theorem 14 7 [Note the D here ire formed for the same
polynomal whereas in the case of the matrix 1n Theorem 14 9 each
H 15 formed for a different polynomial }

HViAF)#M OM, thenJu EV(F)Dag M ®M,and
we proceed as before to get another invariant subspace i with no
vectors in common with A7 and M, except 0 We can continue in this
manner until we have V,(F)— M, ® M, D @ M, and we have

matnx of « refalive 1o the f s aind ¢ s 18 ( ) where D are of the

THEOREM 151 If @15 a hinear transformation of Va{ F) with
mimmum polynomial mi{x) — (p(x))* where p(x) 1s irreducible 1n
F[x] then there exists a basis of },( F) such that relative to this
basts the matnx of « has the form {S) where each D ts of the form (2)

D
n 0
) 0
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of the matrix in Theorem 14.7 and is the matrix of a cyclic linear
transformation of a subspace of V,( F). Each D; is formed from some
power of p(x).

I m(x) = (p(x))(pa(x))rz - - - (pr(2))*r, where p,(x) is irre-
ducible in F[x], for i=1,2,...,r, and the p,(x) are relatively prime
in pairs, then we can apply Theorem 14.9 to express V,(F) as the
direct sum of the null spaces of (p,(x))*. By the previous develop-
ment, each null space is expressible as the direct sum of invariant
spaces. Thus, V,( F) is expressible as a direct sum of invariant sub-
spaces of the type discussed above. Hence,

THEOREM 15.2. If « is a linear transformation of V;,( F), then
a is expressible as a direct sum of cyclic linear transformations and
there exists a basis of V,,( F) such that relative to this basis, the matrix
of « is the direct sum of matrices of the type of (2) of Theorem 14.7.

16. INVARIANT FACTORS AND SIMILARITY
INVARIANTS

DEFINITION 16.1. The diagonal elements different from O in
the Smith normal form of a matrix as given in Theorem 10.1 are called
the invariant factors of A. The invariant factors of x/ — A where
A € F*** are called the similarity invariants of A.

THEOREM 16.1.  The matrix 4 is similar to the matrix B & A4
and B have the same similarity invariants.

Proor:  Follows immediately from Theorem 10.1 and Theo-
rem 11.6. u

THEOREM 16.2. A matrix 4 is similar to the direct sum of the
companion matrices of its similarity invariants.

PrROBLEM 16.1. Prove Theorem 16.2.

DEFINITION 16.2.  The set of all powers of irreducible factors
of the similarity invariants of the matrix 4, which actually occur in the
similarity invariants, are called the elementary divisors of the matrix 4.

’
THEOREM 16.3. A matrix A4 is similar to the direct sum of the
companion matrices of its elementary divisors.

PROBLEM 16.2.  Prove Theorem 16.3.

For Problems 16.3 through 16.7 use
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ProsLemM 163 Show that the mimtmum polynomial of 4 s
xt—3¢~2 thatof B1s ¥~ 3x—2

ProsLem 164 Show thit the Smuth normal form of «/ — A 1s
1 1
0 0

1
0 T4+ 1 that of </—B s 0 mix) .

m(x),
where m each case m(y) 15 the mimmum polynomal of 4 or B,
respectively

m(x),

ProBLEM 165 Find a bams of V,(Q) of the type developed
tn the proof of Theorem 15 1 for 4 and for B

PrROBLEM 166 Venfy that A and B are in the forms given in
the preceding theorems with respect to the bases found in Problem
165

PROBLEM 16 7 Give a matnx with simlanty tnvanants
(x= N2+ 1) (x~ NHF+ 1320+ 30+ 5)

PROBLEM 16 8 Do the same as m Problem 16 7 over F = Q (1}

DEFINITION 16 3 Let 7n(x) hy{x) he(x) be the sim
tarity anvariants of the matrix 4 Then the polynomial f(x) = I,
f;(x) 18 the characteristic polbynanual of A

THEOREM 164 The last similanty tmvanant of a matnx 1s the
minmum polyaoemal of 4

CoRrOLLARY 16 | (The Hamilton-Cayley Theorem) If f(x) 1s
the charactenstic polynomal of the matnx 4 then f(4) =0

ProBLEM 169 Prove Theorem 16 4

ProBLEM 16 10 Prove Corollary 161
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Algebra, 112

linear associative, 112

linear nonassociative, 112

of rational quaternions, 115
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Algebraic
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field, 136

systems, 100

systems, product of, 100
Algorithm, division, 118
Alternating group, 81
Antecedent of a natural number, 9
Anti-automorphism, 78
Anti-isomorphism, 78
Associate, 38
Associative

algebra, 112

law, 7

law generahzed, 19

law for mappngs, 18
Automorphism

mner, of a group, 29

of algebraic systems, 101

of a semigroup, 29

outer, of a group, 59

Basiy
of an abelian group, 94

of an R-module, 108
Belongs to, 2

Bilmerul ideal, 128
Binary operation. 6

Cancellation law, 10
Canonical

matrix, Jordan, 196

matrix, classical, 198
Cartesian product, 5
Cauchy, 75
Cayley, 79, 202
Center of a group, 61
Central of a group, 61
Characteristic

of a field, 93, 99, 143

of a ring, 93, 99

polynomial, 202
Circular permutation, 79
Classical canonical matrix, 199
Closed, 6, 97
Coeflicients

leading, 117

of a linear combination, 105

of a polynomial, 117, 127
Column, (see property without the

modifier column)
Common part, 3
Commutative

group, 57

property, 6, 7

ring, 95
Companion matrix, 196
Compatible, 13

with the structure of a ring, 130
Complete

set of conjugates, 63

set of residue classes modulo m, 43
Component, 66, 103
Composite, 6

of a finite sequence of elements, 19
Composttion

external, 97

factors of, 90

internal, 5

series, 90

table of a semigroup, 28
Congruence modulo m, 43
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Conugate
elements of a group 63
elements over a field 145
quaternions 115
subfields 142
subgroups 63

Contained n 2

Coordinates 173

Cosets of a group $3

Cycle 79

Cyche
group 47
tinear \\‘anshm\m on 195
permutation 79
space 193
subgroup 49

Cyclotomic
extension of a field 153
field 152

polynomial 153

Defined everywhere 6
Definmng relanions 73
Degree

of an element over a field 136
«of one field over snother 136

of a permutation 78
of a polynomnl 117
proper 185
veduced 149

Denvative of a polynomial 12t

Dragonal matne 183

D fference nng 131

D menson 109

D hedral group 67 73

Direct
product of groups 66
sum of groups 66

sum of R modules 104 188
sum of two hinear (ransformation 188

Distrbuuve faw 8
Dyvision
algonithm 118
ang 9
Divisor 37
elementary 01
greatest common 38
of zero 94
proper 3%
Duvisorless ideal 131
Domam
wntegrat 95

Index

of integnty 95
Eisenstein s thorem 124

adjacent 70

conjuste of a group 63
conjugate over a field 145
wennty 93

tnseparable 148

neutral 22

primive 154
primitive ‘hgorem 155
regular
separablc 148

Elementary
matnx 177
operations on a mainx 176

Elementary dwisor 201

Fmpty
set 3
word 70

Endomorphism
of an ulgebrac system 100
of a sermigroup 29

of mappings 4

Equation {also see polynomial)
homogeneous 175
nonhomogeneous 175
pure I

Equivalence
class
of matrges 176 177
relat on

Essenually unigue factorizauon 41 4%

Euchidean doma n
Euler 43 45

totient funct on 4%
ven

Integers 45

permutation 87
Everywhere dufined 6
Exponent 20 ¥7

additve >0

multiphcanve 20
Extension

algebraic 136

cyclotomic (<8

Galows 156

of a mappng 5

of a semigroup 31

pure 160



transcendental, 136
External composition, 97

Factor

group, 57

invariant, 201

of composition, 90

prime factor group, 90
Factorization, unique, 41, 42, 123
Factors completely, 139
F-automorphism, 141
Fermat, 45
Field, 95

cyclotomic, 152

finite, 153

Galois, 153

mseparable, 148

normal, 146

of quotients, 97

of quotients of polynomials, 127

of rational numbers, 97

prime, 143

root, 140

separable, 148

splitting, 140

stem, 139
F-isomorphism, 144
Finite

characteristic, 94

extension, 133

field, 153

group, 23

sequence, 19
For each, for every, for all, 1
Form, Smith normal, 184, 196
Free, 107

group, 71

module, 108
Function, polynomial, 120

Galois

extension, 156

field, 153

group, 157

resolvent, 156

theory of fields, 156
Gauss® lemma, 124
Gaussian semigroup, 123
Generator of a group or semigroup, 49
Greatest common divisor, 38
Group, 23, 24

alternating, 81

cyclic, 49

factor, 57

free, 71

Index 207

Galois, 157
generators, 49
product, 27
quotient, 57
simple, 77
subgroup, 24
symmetric, 78
with operators, 98

Hamilton, 202
Hdalder, 92
Homogeneous equations, 175
Homologous, 100
Homomorphism
of algebraic systems, 101
of semigroups, 29

Ideal, 128

bilateral, 128

divisorless, 131

maximal, 131

prime, 131

principal, 129

principal, ring, 129

two-sided, 128
Identity

element, 93

mapping, 4
Image, 3, 5 ,
Imbedding of a semigroup, 31, 33
Imply, |
Improper subgroup, 46
Indeterminates, 117, 127
Indexing set, 5
Induction, mathematical, 9
Induced law

in quotient set, 31

in subset, 21
Inequality of natural numbers, 14
Inner automorphism, 59
Inseparable

element, 148

field, 148

polynomial, 148
Integers, 35

absolute value of, 36

negative, 36

positive, 36
Integral domain, 95
Integrity, domain of, 95
Internal composition, 5
Intersection, 3
Invariant

element, 98

factor, 201
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maximal subgroup 89
subgroup
subspace 187
Invanants silanty 20t
Vovananis of an shelian group 84
Inverse element 22
Irreducible clement 38
Isomorphism
of algebraic systems 101
of sermigroups 2

Jordan 90
canonical matnix, 196

Kernel 57

Lagrange 54
Law
associative 7 19
cancellstion 10
commutative 7
distnbunve &
induced in subset 21
induced in quotient set 3¢
of external composition 97
of nternat composition §
of tnchotomy 11
Leading coefhcient 117
Least
common mufuple 38
residues modulo . 43
Left (see property without adjective lefl)
Length of a word 70
Uinear
combinanen 105

transformation 165
nonderogatory 195
nonsingular 1

relaton 111
Linear dependence 105 107
Logic t

Mapping 3

associatve law 18

extension of §

group of 24 25

sdentty 4

hnear 165

one 1o one 4

onto 4

product of 16 17
restiction of §

Mathemanicat snduction 9

Index

Matnc algebsa tota! 169
Matrix 169
<lassical cznonicat 199
companion |
diagonat 183
elementary 177
Jordan canomcal 196
nonsingular 173
similanty of 186
Maximal deal 131
Maxima invariant subgroup 89
Mitimum palynomat 13§ 190
Module 102
nulf 170
of formal linear combimations 11
of inear relations 11§
Modulus 43
Monic polynomsal 117
Muluple 37
deast common 38
Mult phcity of a zero of a polynomsal 121
Multsphcation of natura) numbers 12
Multiphicauve
cxponent 20
group of N 17

NY
Natural numbers §
additive semigroup 17
muluphicative semgroup 17
Necessary and sufficient (
Negation 2
Negative mteger 36
Neutral element 22
Neutral operator 98
Nondurogatory I near transformation 195
Nonhomogeneous equation 175
Nonstngular
linear transformation 165
matrix
Norm of a quatermon 115
Notmal
field 146

Normalizer 63 64
Nult

module 170

set 3

space 170
Nuflity 170
Numbers natural 8

d
nteger 45
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permutation, 81

One-to-one mapping, 4

Onto mapping, 4

Operation, binary, 6

Operator, 98
neutral operator, 98

Order
of a cyclotomic extension, 158
of a cyclotomic polynomial, 153
of an element, 50, 192
of a group, 23

Outer automorphism, 59

Partition, 26
Peano, 9
Period of an element, 50
Permutable
elements of a group, 66
elements of a ring, 94
Permutation, 78
circular, 79
cyclic, 79
Polynomial, 117, 127
algebra, 117
characteristic, 202
cyclotomic, 153
function, 120
inseparable, 148
mimmum, of an element of a field,
136
minimum, of a linear transformation,
190
monic, 117
normal, 146
pure, 160
ring, 117
separable, 148
Positive integer, 36
Power, 20
Prime, 38
factor groups, 90
field, 143
ideal, 131
inZ, 38
to, 40
subfield, 143
Primitive
element, 154
clement theorem, 155
polynomual, 123
Principal ideal, 129
ring, 129
Product
cartesian, §
direct, 66

group, 27
of algebraic systems, 100
of mappings, 17, 18
of words, 76
semigroup, 27
set, 5

Proper
degree, 185
divisor, 38
subgroup, 46
subset, 2

Pure
extension field, 160
polynomial, 160

0,97
Quaternion

group, 12,73

rational quaternions, 114, 115
Quotient

group, 57

ring, 130

set, 26

set, law induced in, 31
Quotients, Field of, 97

Rank
of a free group, 72
of a matrix, 170, 182
Rational
integers, 35 (see integers)
numbers, 97
Reduce a linear transformation
completely, 188
Reduced
degree, 149
residues modulo m, 43
word, 70
Reflexive, 2, 13
Regular element, 94
Relations, 13
Defining relations, 73
equivalence, 26
reflexive property for, 13
symmetric property for, 13
transitive property for, 13
Relatively prime, 40
Residue classes modulo m, 43
complete, 43
least, 43
reduced, 43
Resolvent, Galois, 156
Restriction
of an external law, 100
of a mapping. §
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Right (see property without adjective
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with operators 112

zero ning 94

Root of umty 152

Root field 140
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R module 10
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Self conyugate subgroup 56
Semigroup {6
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extension 31
Gaussian 173
generators 48
product 27
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Separable
element 148
field 148
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Sequence finte 19
Set 2
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indexing §
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of matrices 186
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Solvable group 91
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Index

null 170
vector 103
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Sphitting field 140
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Stem field 139
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normdl
proper 46
selfconjugate 56
stable 98
Sylow 74
Submodule 103 106
Subnng 95
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proper >
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Subsystem 100
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direct groups 66

direct of inear transformations 188
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Supplementary 104
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Transitive, 2, 13

Translation, 78

Transposition, 80

Trichotomy, law of for natural numbers,
11

Trisection of an angle, 140

Two-sided ideal, 128

Union, 3

Unique factorization, 41, 42
Unit, 37

Unitary R-module, 102
Unity, root of, 152

Vector space, 103
subspace, 103
V.“R), 103

Word, 70

adjacent, 71
empty, 70
length, 70
product, 70
reduced, 70

Z, 35
Zero

characteristic, 94
divisor of, 94
integer, 35

of a polynomial, 121
of a ring, 93
polynomial, 117
ring, 94



